JASMAC

OR1-6

雰囲気酸素分圧制御下におけるトレランス因子と六方晶 LnMnO3相の生成の関係

Relationship between Oxygen Partial Pressure and Tolerance Factor in the Formation of Hexagonal LnMnO³ Phase

下村健太1, 栗林一彦2, 小澤俊平1,

Kenta SHIMOMURA¹, Kazuhiko KURIBAYASHI², Shumpei OZAWA¹

1 千葉工業大学, Department of Advanced Materials Science and Engineering, Chiba Institute of Technology

2 千葉工業大学附属研究, Research Liaison Centre, Chiba Institute of Technology

1. Introduction

The equilibrium crystal structure of LnMnO₃ (Ln: Lanthanide) is orthorhombic (*o*-LnMnO₃, space grope: *Pbnm*) when La³⁺ to Dy³⁺ are used as Ln³⁺, and hexagonal (*h*-LnMnO₃, space grope: *P*6₃*cm*) when Ho³⁺ to Lu³⁺ are used as Ln^{3+ 1}). Nevertheless, it is reported that the *h*-LnMnO₃ phase forms even in the DyMnO₃ system when oxygen partial pressure of atmospheric gas (P_{O_2}) is decreased during the solidification from the melt.² Although the formation of *h*-LnMnO₃ phase in DyMnO₃ system is reported to be attributed to oxygen deficiency, the details still remain unclear.

The structural stability of LnMnO₃ can be evaluated by the following tolerance factors, TF³).

$$TF = \frac{r_{\rm Ln} + r_{\rm O}}{\sqrt{2}(r_{\rm Mn} + r_{\rm O})}$$
(1)

where r_{Ln} , r_0 , and r_{Mn} are the ionic radii of Ln^{3+} , O^{2-} , and Mn^{3+} , respectively. In LnFeO_3 , TF < 0.87 is reported to be the criterion for the formation of *h*-LnFeO₃⁴. It is assumed that LnMnO₃ can be characterized as the same as LnFeO₃ because the ionic radii of Fe³⁺ and Mn³⁺ are the same. When Ho³⁺ to Lu³⁺ with relatively small ionic radii are used as Ln³⁺ so that the *h*-LnMnO₃ phase is formed as the stable phase, corresponding the *TF* is calculated at *TF* < 0.85. Note that if the ionic radius of Mn can be increased, it is mathematically possible to satisfy the *TF* < 0.85 with relatively large Ln³⁺, as can be seen from Eq. (1). Since oxygen deficiency is expected in the LnMnO₃ melt under low P_{O_2} , Mn³⁺ may be reduced into Mn²⁺ to maintain electrical neutrality. In this case, the calculated *TF* would be decreased because the ionic radius of Mn²⁺ is larger than that of Mn³⁺.

In the present study, DyMnO₃ melt was solidified at various P_{O_2} condition to examine whether oxygen deficiency was induced. The purpose of this study was to investigate whether the decrease in *TF* corresponding to oxygen deficiency facilitates the formation of *h*-LnMnO₃ as same as that corresponding to decrease in r_{Ln} .

2. Experimental procedure

Dy2O3 and Mn2O3 powders, mixed in an agate mortar, were melted on a copper hearth by irradiation from

a semiconductor laser and then solidified into a spherical DyMnO₃ sample with a diameter of 2 mm. The spherical sample was heated to approximately 2300 K to completely melt it and then solidified in an aerodynamic levitation furnace (ADL) using a mixture of Ar and O₂ gases. Temperature and solidification process of the sample was monitored by a monochromatic pyrometer and a high-speed video camera (HSV), respectively. The solidified samples were analyzed by powder x-ray diffractometer (XRD), and thermogravimetric differential thermal analysis (TG-DTA) at P_{0_2} = 1 × 10⁵ Pa.

3. Results and discussion

Figure 1 shows typical TGA curves for DyMnO₃ samples solidified at $P_{0_2} = 1 \times 10^5$ Pa and 1 Pa. The mass of DyMnO₃ samples increases with elevating the temperature up to 1200 K and changes little at the subsequent cooling stage. This confirms the oxygen deficiency in the as-solidified DyMnO₃ sample. The increase in the sample mass becomes large in the sample solidified at $P_{0_2} = 1$ Pa, indicating that the oxygen deficiency is enhanced by decreasing the P_{0_2} .

When the oxygen deficiency is induced in the DyMnO₃ sample depending on the P_{O_2} , the following chemical reaction, being possible together with reduction of Mn³⁺ into Mn²⁺, should be considered.

$$2 \text{ Dy}_2\text{O}_3(\text{s}) + 4 \text{ MnO}(\text{s}) + \text{O}_2(\text{g}) = 4 \text{ DyMnO}_3(\text{s})$$
$$\Delta G^\circ = -534400 + 224 T \text{ [I-mol^{-1}]}^{5)}$$

When assuming that the increase in sample mass is due to the supply of oxygen corresponding to the oxygen deficiency and Mn²⁺ corresponding to the oxygen deficiency is allocated to MnO and DyMnO₃₊₆ phases, the amount of Mn²⁺ would be evaluated from the production ratio of MnO and *h*-DyMnO₃ phases. Figure 2 shows XRD profiles of DyMnO₃ samples solidified at various P_{O_2} together with the calculated *TF* from the above assumptions. When calculated *TF* corresponding to oxygen deficiency is 0.844 under P_{O_2} of 1 × 10⁵ Pa, the diffraction peaks for *h*-DyMnO₃ (\Box) and *o*-DyMnO₃ (Δ) phases are detected in the XRD profile of the sample.

However, the diffraction peaks for *o*-LnMnO₃ phase disappears when calculated *TF* corresponding to oxygen deficiency decreases to 0.836 under P_{O_2} of 3 × 10³ Pa. This indicates that decrease in *TF* corresponding to oxygen deficiency facilitates the formation of *h*-DyMnO₃.

Further decrease in the calculated *TF* corresponding to oxygen deficiency under lower P_{0_2} enhances the formation of cubic MnO (*c*-MnO, space group: *Fm*3-*m*) (O) and cubic Dy₂O₃ (*c*-Dy₂O₃, space group: *la*-3) (\diamond) together with those of *h*-LnMnO₃. This is evidence that the chemical reaction of Eq. (2) follows when decreasing P_{0_2} .

4. Summary

DyMnO₃ samples were solidified at various P_{O_2} condition. As a result, the decrease in P_{O_2} results in oxygen deficiency in as-solidified samples. Formation of *h*-DyMnO₃ was promoted by decreasing *TF* corresponding to oxygen deficiency.

Fig. 1. TGA curves for DyMnO₃ samples solidified at P_{0_2} = 1 × 10⁵ Pa and 1 Pa. Annealed at P_{0_2} = 10⁵ Pa

Fig. 2. X-ray diffraction patterns of DyMnO₃ samples solidified at various P_{O_2} .

Reference

- 1) H. L. J. Yakel, W.C. Koehler, E.F. Bertaut and E.F. Forrat: On the crystal structure of the manganese (III) trioxides of the heavy lanthanides and yttrium, *Acta Crystallogr.*, **16** (1963) 957.
- 2) M. S. Vijaya Kumar, N. Higaki, K. Kuribayasi, T Hibiya and S. Yoda: J. Am. Ceram. Soc., 94 (2011) 282-289.
- 3) K. Kuribayashi and M. S. Vijaya Kumar: NASA/CP-2012-217466, 128-135.
- 4) K. Kuribayashi and M. S. Vijaya Kumar: Crystallographic Stability of Metastable Phase formed by Containerless Processing in REFeO₃ (RE: Rare-earth Element), *NASA/CP-2012-217466 126-135*.
- 5) N. Kamegashira and Y. Hiyoshi: Materials Letters, 2 (1984) 337-338.

© 2022 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).