

惑星居住を指向した 資源・エネルギー開発

-In-situ Resources Utilization for Long Term Manned Space Mission -

同志社大学理工学部・環境システム学科

後藤琢也

本日の話

• その場資源利用の必要性

・ 溶融塩電解について

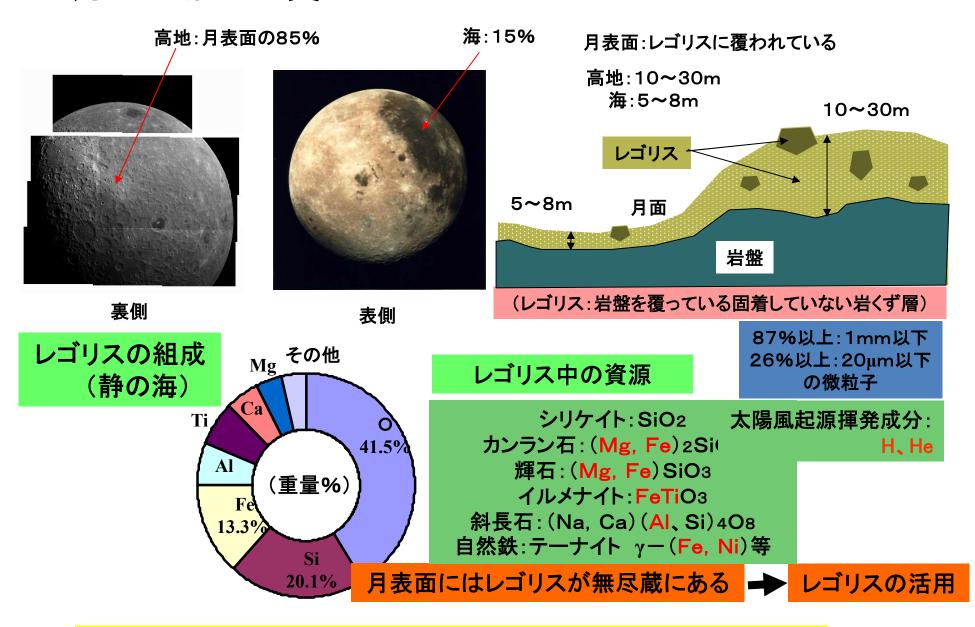
• 実施例

・まとめ

月居住を考えたとき

宇宙環境に適応して生きていく必要

資源とエネルギーの有効利用


In situ Resource Utilization (ISRU)

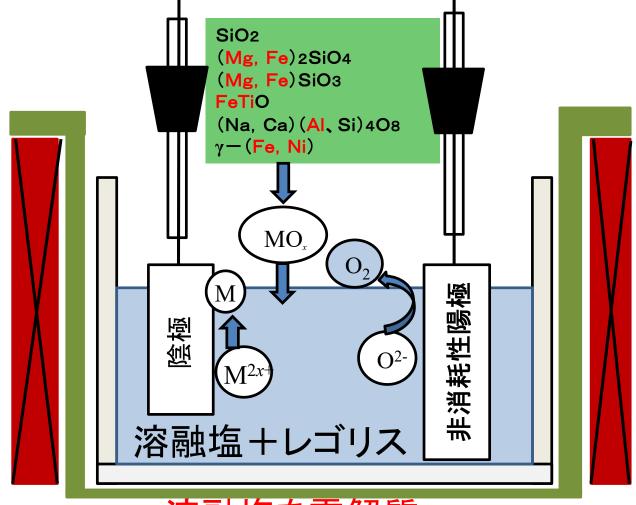
過酷な環境

(真空、小重力場、放射線、温度変化)

⇒分離回収に多くのエネルギーが必要

月の地形と地質

酸化物からの分離回収;電解法が最適



溶融塩電解

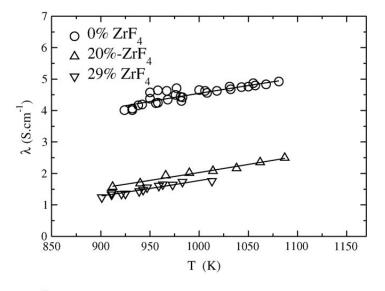
• レゴリスからの金属と酸素分離の原理

電解による分離回収 h sio2

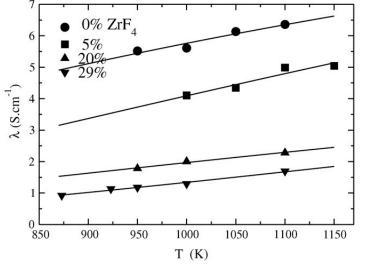
溶融塩を電解質

溶融塩(イオン液体)

アニオンとカチオンのみから構成


溶融塩の特性

- 〇何でも溶かすことができる
- 〇不揮発性
- 〇化学的・物理的に安定
- ○放射線損傷を受けにくい


・ 代表的な溶融塩の物性(水との比較)

Name Composition	water H ₂ O	Heat Transfer Salt NaNO ₃ -NaNO ₂ - KNO ₃	FLIBE LiF-BeF ₂	FLINAK LiF-NaF-KF	LiCl-KCl	
融点 (C°)	0	142	460	454	352	
沸点 (C°)	100	~800 (熱分解)	1,151 (BeF2)	1,510 (KF)	1,382 (LiCl)	
密度 (g/cm³)	1.0	1.79	1.9	2.0	1.6	
粘性 (mPa*s)	1.0	1.3-1.6	5.6	2.9	2.2	
熱容量(kJ/kg K)	4.18	1.56	2.41	1.88	1.5	
適用	-	冷媒	溶融塩炉/ 再処理	溶融塩炉/ 再処理	使用済燃 料再処理	

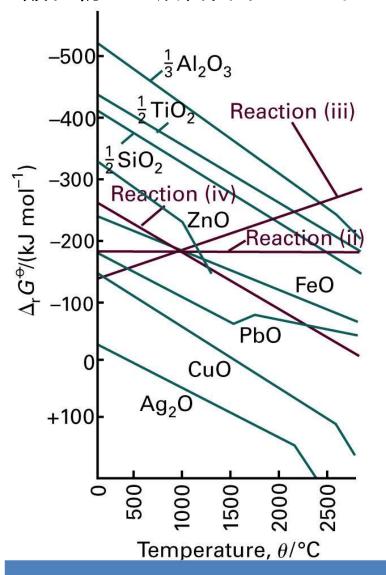
溶融塩添加による電導度の変化(例) LiF-NaF-ZrF₄

ZrF ₄ mol%	0	20	29
Ea KJ mol ⁻¹	9.3	20.8	24.2

Increase of $ZrF_4 \rightarrow Decease$ of electric conductivity

Experimental (top) and simulated (bottom) values for the electrical conductivity as a function of temperature for all the compositions studied.

T. Goto, et al, J. Fluorine Chem. 130 (2009) 61.


溶融塩の利点:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1						ŀ	4											2 He
2	3 Li	4 Be				1							5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Du	105 Jo	106 Rf	107 Bh	108 Ha	109 Mt									

57 La	58 Ce	59 Pr		61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	10.00	67 Ho	100000000000000000000000000000000000000	69 Tm		
89 Ac	90 Th	91 Pa	92 U	93 Np	100000000000000000000000000000000000000		96 Cm		98 Cf		The second second second second	101 Md	100 DOM: NO. 100 D	103 Lr

ほぼすべての元素を電気化学的に析出可能

酸化物の生成自由ギブスエネルギー

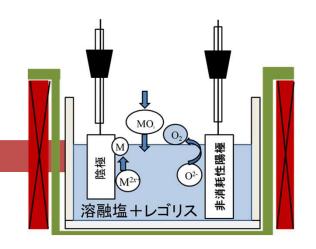
電解電位で選択回収が可能

Oxide	-E (V) vs. oxygen evolution
SiO ₂	<u>1.757</u>
Al_2O_3	2.173
FeO	0.987
CaO	2.592
Na ₂ O	1.117
MgO	2.379
BaO	2.202

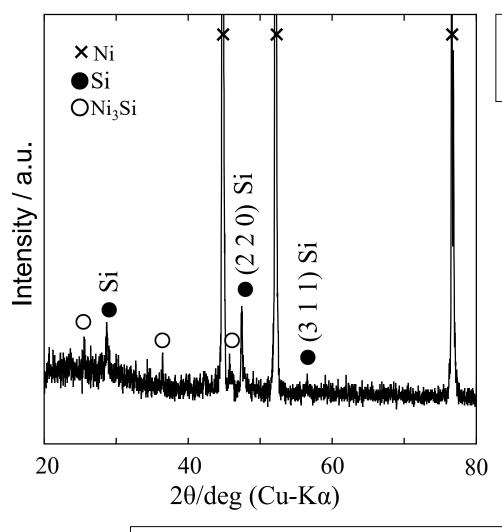
SiO₂を 1.757 Vで電解することでSiが得られる.

模擬レゴリスシミュラントからの分離・回収

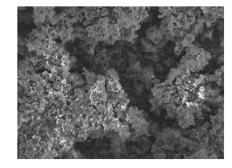
レゴリスからはじめる資源開発 (シリコン、鉄、酸素など)


方法:溶融塩電解方法 レゴリス 隐極 陽極 溶融塩+レゴリス

電気炉付きグローブボックス



Ar雰囲気のボックス 内での電解操作


模擬月レゴリスからのシリコン回収

Temerature 600 °C Working electrode Ni Molten salt+lunar regolith simulant

SEM image

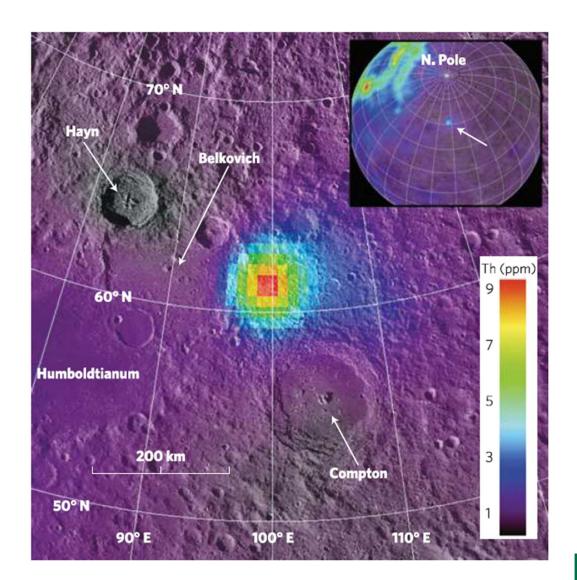
 $10 \, \mu m$

模擬月レゴリスからのシリコンの回収

模擬月レゴリスからの鉄回収

Temerature 600 °C Molten salt+lunar regolith simulant

陰極:モリブデン


鉄とモリブデンの合金: Fe7Mo3

陰極:Ni

Si回収に成功

その場熱源について

Figure 1 Compton–Belkovich thorium anomaly. The location of the CBTA is northeast of Humboldtianum basin and just beyond the Moon's eastern limb (LP–GRS 0.5° , \sim 15 km resolution Th data^{1,2} as deconvolved by Lawrence et al.³, overlain on WAC 400 m per pixel base). The highest measured Th intensity corresponds to a concentration at this resolution of \sim 10 ppm at the centre of the Th hotspot.

月表面のトリウム (Th)分布

ARTICLES
PUBLISHED ONLINE: 24 JULY 2011 | DOI: 10.1038/NGE01212

nature geoscience

Non-mare silicic volcanism on the lunar farside at Compton-Belkovich

Bradley L. Jolliff¹*, Sandra A. Wiseman², Samuel J. Lawrence³, Thanh N. Tran³, Mark S. Robinson³, Hiroyuki Sato³, B. Ray Hawke⁴, Frank Scholten⁵, Jürgen Oberst⁵, Harald Hiesinger⁶, Carolyn H. van der Bogert⁶, Benjamin T. Greenhagen⁷, Timothy D. Glotch⁸ and David A. Paige⁹

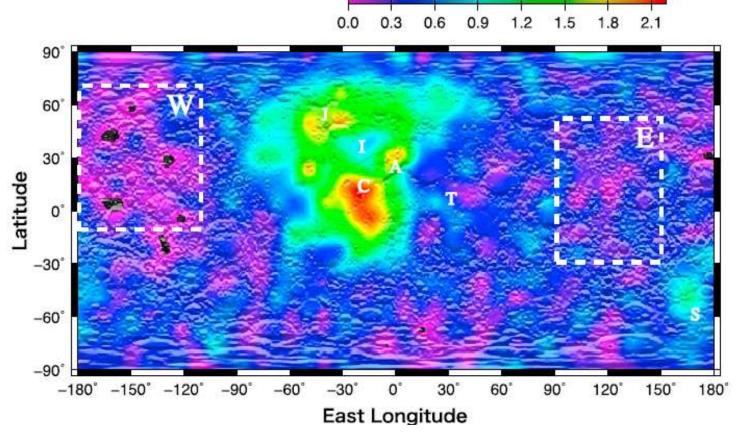
火星以遠で原子力の活用 Ooshisha University トリウムRTG

〇木星以遠で原子力を活用したい ★U、Pu系核燃料は避けたい

★"ロケットの先端に核燃料" のように見えてはダメ

月重力圏外で ²³²Thから²³³Uへ転換

運用例:


- 採取したサンプルは地球へ帰還電源システムと探査機本体は共に 深宇宙探査継続または太陽近傍へ

U ppm

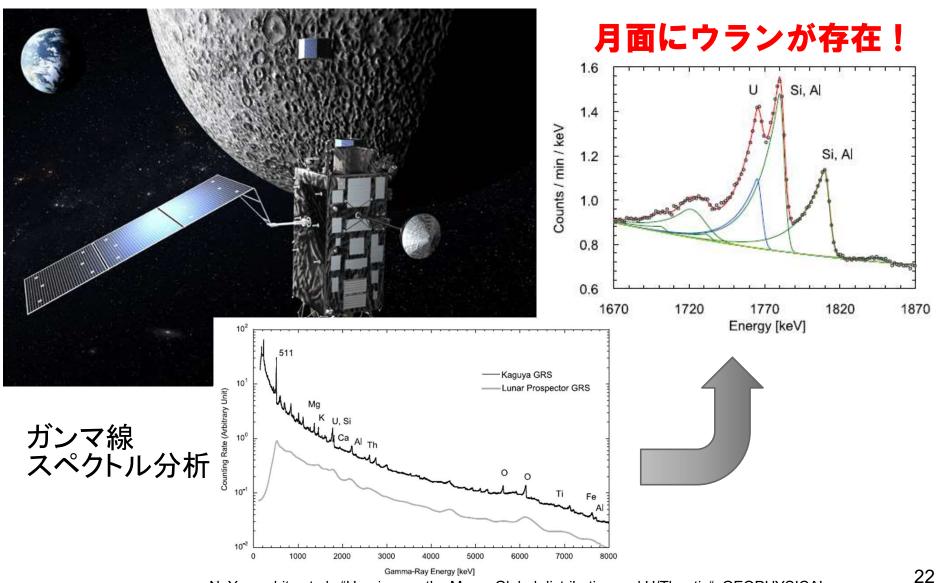
KAGUYAの計測した月表面のU分布

■原子力エネルギー利用の可能性?

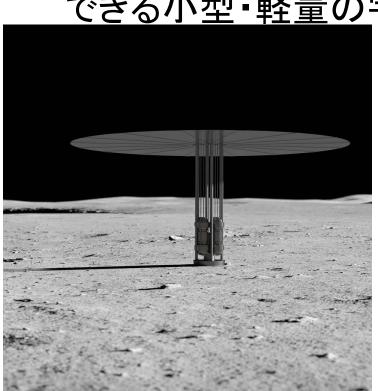
※人形峠のウラン鉱床は500~600ppm

月面や火星の基地構築には…

ロボットや人間による拠点構築では、長期間安定に多量の電気(>100kW)を供給できる電源が不可欠。



核分裂原子炉:高出力密度で長期間稼働



KAGUYAによる月探査(2009)

NASA&DOEのKilopowerプロジャ 同志社大学 Doshisha University

Kilopowerは最低10年間に亘り1~10kWeの電気を供給 できる小型・軽量の宇宙原子炉。

UMo金属燃料

B₄C制御棒

総重量:400kg(1~3kWe)

水冷却管 ラジエーター

スターリング発電機

液体Na輸送管

LiH/W遮蔽体

BeO反射体

〇月は、貧アルカリ環境 〇火星は、海水由来の塩あり

ARTICLE

https://dolorg/10.1038/s41467-019-12871-6

OPEN

Semiarid climate and hyposaline lake on early Mars inferred from reconstructed water chemistry at Gale

Keisuke Fukushi 1, Yasuhito Sekine 1,2, Hiroshi Sakuma 3, Koki Morida & Robin Wordsworth 5

まとめ

その場資源エネルギー開発:

ニュートラルな立場から検討する必要(是々非々の議論)

シリコン⇒太陽電池、 鉄、アルミニウム⇒構造材料等、セメント等 酸素⇒生命維持、推進剤

すべての元素について、 究極の資源・エネルギーエコシステムの開発が必要