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Effect of Heat Loss on Hydrothermal wave Instability in Half-Zone Liquid 
Bridges of High Prandtl NumberFluid
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Abstract

We investigate the effect of heat transfer through a free surface on the primary instability of thermocapillary-driven convection in a geometry 
of so-called half-zone liquid bridge of high Prandtl number fluid. The target liquid bridge is a straight whose aspect ratio Γ = H/R is mainly kept 
at 2.0, where H and R are the height and the radius of the bridge, respectively. We focus on the flow fields induced by the instability; it is found 
that the bifurcation diagram exhibits a significant difference between the cases of the Prandtl number Pr = 16 and 28. The effect of gravity level 
is also examined in order to discuss qualitatively the induced flow fields after the transition obtained in the ground-based experiments as well as 
in on-orbit experiments so-called ‘Dynamic Surf’ in the Japan Experiment Module ‘Kibo’ aboard the International Space Station.
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1. Introduction

Flow instability induced by the thermocapillary effect in a high
Prandtl number fluid, or, so-called hydrothermal wave (HTW)
instability, has been an attractive topic since Smith & Davis 1)

and Xu & Davis 2) towards applications such as material process-
ings, crystal growths and cleaning processes. Especially with a
geometry of half-zone liquid bridge, in which an amount of liq-
uid is ‘bridged’ between the coaxial cylindrical rods, a number
of research have been conducted in order to understand the tran-
sition process of the induced convection. Kamotani et al. 3) trig-
gered a range of discussion on sensitivity of the instability to the
heat transfer through the free surface. In the induced convec-
tion with this geometry with high Prandtl number (Pr) fluid, it
has been known that the flow field exhibits a transition from two-
dimensional time-independent ‘steady’ state to three-dimensional
time-dependent ‘oscillatory’ one 4–9). Such transition is known as
the primary one due to HTW instability. Recently Ogasawara
et al. 10) illustrated the existence of secondary instability even
for high Pr fluids. The thermal-flow fields in traveling regime
after the primary instability and before the secondary instabil-
ity have a single fundamental frequency, and they seem rigid in
the reference frame rotating with HTW e.g., 11,12). Kamotani et
al. 3) indicated that the onset condition for the primary instabil-
ity is drastically affected by changing the ambient-gas tempera-
ture. Effect of the ambient-gas flow around the liquid bridge was
then illustrated by experimental13–16) and numerical 13,15,17–20)

approaches. Series of microgravity experiments in the Japanese
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Experiment Module ‘Kibo’ aboard the International Space Sta-
tion (ISS) were conducted 21,22) as a part of the Japan-US joint
project known as ‘Dynamic Surf,’ and would be conducted 23)

as a part of the Japan-Europe joint project known as ‘JEREMI
(Japanese-European Research Experiments on Microgravity In-
stability)’ focusing on this problem. According to the knowledge
accumulated through the previous researches, it has been found
that the heat loss through the free surface destabilizes the flow
fields 7,17,19,22), whereas the heat gain stabilizes those 3,14,22). In
a wider range of heat transfer, on the other hand, it was also in-
dicated that the heat-loss condition would bring stabilizing effect
on the induced convection17,19). It was also indicated that the
standing-wave-type oscillatory mode emerges more stably in the
induced oscillatory convection after the onset of primary instabil-
ity in the microgravity experiments with high Pr fluids 9).

One has to accumulate knowledges on physical mechanism to
select the flow patterns induced by the thermocapillary-effect un-
der the effect of heat transfer through the free surface for more
precise prediction of the transition condition as well as the flow
patterns. Xun et al. 24) conducted a linear stability analysis for the
liquid bridge of Pr = 16 and the aspect ratio Γ = H/R = 1.8 (H
and R are the height and radius of the liquid bridge, respectively)
in order to illustrate the effects of heat loss to the primary in-
stability, and indicated the flow patterns as well as the transition
conditions as a function of heat transfer ratio. In order to lead
comprehensive understandings of the transition mechanism in the
liquid bridge of higher Pr employed in the ground- e.g., 4,7,25) and
on-orbit experiments such as ‘MEIS (Marangoni Experiments in
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Space e.g., 8,9,26–28))’ as well as ‘Dynamic Surf,’ it is indispens-
able to conduct theoretical analyses dealing with the effect of heat
transfer through the free surface on the transition problems.

In the present study, we examine the effect of heat transfer
through the free surface on the hydrothermal wave instability in
a tall liquid bridge of Pr = 28 by linear stability analysis. Note
that the Prandtl number concerned is still too small comparing
to those employed in the on-orbit experiments (Pr ≳ 70); this re-
search work is conducted to illustrate that a slight change of Pr
brings significant effects on the transition for the first place. Note
as well that this value of Pr corresponds to the one of the test fluid,
which has been widely used in the ground experiments.

2. Methods

2.1 Formulation of problem

The target geometry is a straight cylindrical liquid bridge sus-
tained between the coaxial circular disks (Fig. 1). The radius of 
the disks is R, and the height of the liquid bridge (or, the dis-tance 
between the disks) is H. The shape of the liquid bridge in the 
present study is fixed; aspect ratio Γ = 2.0, and volume ratio V/V0 

= 1.0, where V is the volume of the liquid and V0 is the volume of 
the cylinder between the rods as πR2H. We consider a situation 
that a mean surface tension of the liquid is large enough to 
neglect any static and dynamic deformations of the liquid bridge. 
The temperatures of the top disk at z∗ = H
and the bottom one at z∗ = 0 are kept constant at T ∗ = T ∗H and
T ∗ = TC

∗ , respectively. The temperature difference between the

disks is described ∆T ∗ = T ∗H −T ∗C > 0. The surface tension γ (T ∗)
is assumed to depend on the temperature T ∗ linearly, that is,
γ (T ∗) = γ

(
T ∗C
)
+ γT

(
T ∗ −T ∗C

)
, where γT indicates the tempera-

ture coefficient of the surface tension γT = ∂γ/∂T ∗. In the present
study it is assumed that γT = const. < 0.

Heat transfer between the liquid bridge and the ambient gas is
considered by introducing a constant heat transfer coefficient h in
order to describe the heat flux on the free surface. The temper-

Fig. 1 Target geometry: half-zone liquid bridge of aspect ratio
Γ = H/R = 2.0.

ature in the ambient gas is assumed to be constant at the bottom
rod temperature, that is, T ∗∞ = T ∗C as introduced by the previous
studies 24,29). Heat transfer through the free surface of the liquid
bridge is controlled via non-dimensional Biot number defined as
Bi = − (hH)/λ, where λ is the thermal conductivity of the liquid.

We consider a Newtonian and incompressible fluid in the liq-
uid bridge. The governing equations are (1) Navier-Stokes,
(2) continuity, and (3) thermal energy equations. These equa-
tions are non-dimensionalized by considering the scales H, U0 =

(|γT |∆T ∗)/ (ρν), ρU2
0 , and H/U0 for the length, velocity, pres-

sure, and time, respectively. ρ and ν are the density and the kine-
matic viscosity of the liquid, respectively. Non-dimensional ve-
locity vector u consists of ur, uθ and uz in r-, θ- and z-direction
components, and non-dimensional temperature T is defined as(
T ∗ −T ∗C

)
/∆T ∗. The properties except the surface tension are in-

dependent of the temperature. The governing equations are de-
scribed as follows;

∂u
∂t
+ (u · ∇)u = −∇P+Re−1∇2u+

Bd
Re

Tez, (1)

∇ ·u = 0, (2)
∂T
∂t
+ (u · ∇)T =

1
RePr

∇2T, (3)

where Re indicates the thermocapillary Reynolds number defined
as Re = |γT|∆T∗H/(ρν2), and Bd indicates the dynamic Bond
number defined as ρgβH2/|γT|. The gravity is described by g, and
the thermal expansion coefficient by β. Note that the dynamic
Bond number is also defined as Gr/Re where Gr expresses the
Grashof number.

We apply no-slip boundary condition on both of the end disks,
and so-called ‘thermocapillary boundary condition’ over the free
surface, which demands the thermocapillary shear stresses on
the free surface are balanced by bulk shear stresses 1,29). The
boundary conditions in non-dimensional manner are described
as follows; u (z = 1, 0) = 0, T (z = 1) = 1, and T (z = 0) = 0 on
the both end disks. On the free surface (at r = 1/Γ), u · er = 0,
S · er + (I3 − erer) · ∇T = 0, ∇T · er +Bi(T−T∞) = 0, where S =
∇u+ (∇u)T is the stress tensor, er the unit vector in a radial direc-
tion, I3 the identity matrix, and T∞ the ambient temperature.

2.2 Numerical methods and validation

Linear stability analysis in this study is based on Motegi et
al.30) The flow and thermal fields Φ = (ur,uθ,uz,P,T )T are de-
composed into the basic fieldΦ= (ur,uθ,uz,P,T )T and the distur-
bances ϕ̂ = (ûr, ûθ, ûz, P̂, T̂ )T as Φ(r, θ,z, t) = Φ(r, θ,z)+ ϕ̂(r, θ,z, t)
by assuming that the disturbances are (I) small enough as ||ϕ̂|| ≪
1, and (II) are expanded to the normal modes as ϕ̂(r, θ,z, t) =
ϕ̃(r,z)exp(imθ+ξt)+c.c., where i2 = −1, m is the azimuthal wave
number, ξ is the complex growth rate, and c.c. the complex con-
jugate. In the present study, we target the thermal-flow field of
m = 0, 1 and 2 in the analysis, and never consider the higher m
because of the high Γ of the liquid bridge 5,7). The basic flow is
axisymmetric and steady, so that ∂tΦ = ∂θΦ = uθ = 0. Govern-
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Fig. 2 Neutral curves for liquid bridge of (Pr, Γ) = (16, 1.8)
under zero gravity (0g0) condition. Prediction by Xun
et al. 24) is also illustrated.

ing equations (1-3) for the basic flow are described by the stream
function–vorticity formulation. The Stokes stream functionΨ and
vorticity ζ are introduced as ur = (1/r)∂zΨ, uz = −(1/r)∂rΨ, ζ =
∂zur −∂ruz, and we substitute them into the governing equations.
We adopt boundary conditions as follows: Ψ = ∂zΨ = 0 on the
both end disks, T = 0 for z= 0 and T = 1 for z= 1, Φ= ζ−∂zT = 0
on the free surface (at r = 1/Γ), andΦ= ζ = ∂rT = 0 on the central
axis of the liquid bridge (at r = 0).

We put Φ into the governing equations (1-3), then the distur-
bance is governed by partial differential equation as follows;

[
∂tS+L+dN

(
Φ
)]
ϕ̂ =N

[
ϕ̂, ϕ̂
]
, (4)

where the operators S, L and N [Φ,Φ] are described as follows
(see the next page);

(followed by Eqs. 5–8 on the next page) As we assume (I) the dis-
turbance is small as aforementioned, the disturbance is governed
by a partial differential equation:

[
∂tS+L+dN

(
Φ
)]
ϕ̂ = 0. (9)

Equation 9 is discretized using the central difference scheme.
Then ϕ̃ and ξ are determined by solving the generalized eigen-
value problems obtained. When the basic flow is neutrally stable
(i.e., ℜ(ξ)= 0), the Reynolds number is denoted as the critical
Reynolds number Rec. Employing the Arnoldi method 31) we
calculated about 30 eigenvalues with large real parts to prevent
overlooking any neutral curves.

Two-dimensional basic thermal-flow fields Φ =

(ur,uθ,uz,P,T )T are solved with a mesh of (Nr,Nz) = (67,120)
and (133,120). Since we convince ourselves that the coarse
mesh is fine enough to resolve the basic thermal-flow fields Φ,
we employ the mesh of (Nr,Nz) = (67,120) in the followings.
The governing equations for the disturbances are solved with a

mesh of (Nr, Nθ, Nz) = (67,61,120) through this work. The effect 
of the grid numbers are examined with a finer mesh system of 
(Nr, Nθ, Nz) = (133,61,240).

We first conduct the linear stability analysis for the liquid 
bridge of (Pr, Γ, Bd) = (16, 1.8, 0), which are the same as Xun et 
al. 24) to validate our code. Figure 2 illustrates the on-set 
conditions of the oscillatory convections under the condition
of T ∗∞ = TC

∗ for the ambient gas temperature. Note that the value

of Bi by Xun et al. 24) is converted under the present definition; 
the Biot number in Xun et al. 24) was defined with the radius of 
the liquid bridge as the characteristic length, whereas that in the 
present study is defined with the height of the liquid bridge. It is 
found that the eigenfunction with m = 2 does not emerge as the 
most dangerous thermal-flow field under this condition as Xun et 
al.24) predicted. We convince ourselves the present code repro-
duces almost perfectly the predictions of the onset condition with 
the most dangerous flow patterns in terms of the eigenfunctions. 
The difference in the predicted threshold ranges within a few per-
cent. The grid-size effect will be discussed in §3 with the results 

of the onset conditions for the primary instabilities.

3. Results and Discussion 

3.1 Under zero gravity

Figure 3 illustrates the nuetral curves in terms of Re (or, criti-
cal Reynolds number Rec) against the Biot number Bi for differ-
ent aspect ratio Γ under zero gravity condition (top), and corre-

sponding surface-temperature deviations T̂ over the free surface 
(bottom): rows (1) and (2) indicate the results under Γ = 1.5 and 
2.0, respectively. It is found that the most dangerous azimuthal 
wave number is m = 1 under these conditions. Not only the eigen-
function with m = 2 but also that with m = 0 become more stable 
against the perturbations, thus the nuetral curves never appear in 
the range of this figure. Note that the surfaces of the liquid bridge 
are drawn by reflecting the corresponding aspect ratio for the sake 
of visibility; the liquid-bridge height H is considered as the char-
acteristic length, so that the non-dimensional heights for all cases 
are of unity. In the liquid bridge of Γ = 1.5, flow field with one 
kind of eigenfunction emerges in a range of Bi concerned. The 
critical Reynolds number decreases as Bi. This nuetral curve is 
called as branch (a) hereafter. The flow fields with this eigen-
function accompany with the temperature deviation over the free 
surface propagating from the hot disk to the cold disk as indi-
cated in the bottom of the figure: A pair of relatively cold and 
relatively hot spots emerge near the heated disk by monitoring 
the surface temperature deviation. So that one realizes an oscil-
latory convection with an azimuthal mode number m = 1. The 
cold spot stretches toward the cooled disk as its width becomes 
narrower to form a local cold line as getting close to the cooled 
disk. Such flow pattern of branch (a) was observed in the micro-
gravity experiments8,21) as well as numerical simulations 16). The
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S =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1


, (5)

L =



−Re−1
(
∆− r−2

)
2Re−1r−2∂θ 0 ∂r 0

−2r−2Re−1∂θ −Re−1
(
∆− r−2

)
0 r−1∂θ 0

0 0 −Re−1∆ ∂z −Bd/Re
∂r + r−1 r−1∂θ ∂z 0 0

0 0 0 0 −Ma−1∆


, (6)

N
[
ϕ̂, ϕ̂
]
=



−
(
ûr∂rûr + r−1ûθ∂θûr + ûz∂zûr − r−1ûθûθ

)
−
(
ûr∂rûθ + r−1ûθ∂θûθ + ûz∂zûθ − r−1ûrûθ

)
−
(
ûr∂rûz + r−1ûθ∂θûz + ûz∂zûz

)
0

−
(
ûr∂rT + r−1ûθ∂θT + ûz∂zT

)


, (7)

dN
(
Φ
)
ϕ̂ = N

[
Φ, ϕ̂
]
+N
[
ϕ̂,Φ
]

(8)

relatively cold region, as well as hot region, rotates azimuthally
at the same azimuthal velocity along the z direction but with a
phase difference at each z position. Thus the thermal wave seems
propagate from the hot disk to the cold disk without changing its
spatial distribution all over the free surface.
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Fig. 3 Nuetral curves against the Biot number Bi (top), and
corresponding surface-temperature deviations T̂ over
the free surface (bottom) for liquid bridge of (Pr, Bd)
= (28, 0) under Γ = (1) 1.5 and (2) 2.0. The surfaces
of the liquid bridge are drawn by considering the aspect
ratio. The most dangerous wave number is found to be
m = 1 for the whole conditions concerned.

In the case of the liquid bridge of Γ = 2.0, on the other hand, it 
is found that two different branches with the same m = 1 structure 
appear against Bi. We indicate that the newly emerged branch is 
the most unstable eigenfunction in a region of Bi ≲ 1.2, and the 
branch (a) becomes the most unstable one in the higher Bi. The 
distribution of the surface-temperature deviation for newly arisen 
branch is similar in quality to that for the branch (a). That is, there 
exists a pair of relatively hot and cold areas cover the free surface 
of the liquid bridge, and the thermal wave propagates obliquely 
from the hot to cold disks. It is found that the basic flow patterns 
in r −z plane resemble each other as well. We call this new branch 

as the branch (a’).
Here we estimate the grid-size effect for evaluating Rec. Table 

1 indicates the thresholds under Γ = 2.0 and Bd = 0 as a function 
of Bi. There exist differences of 2 to 4% for small Bi and about 
0.2% for large Bi between the thresholds with coarse and fine 
grids. In the following we will discuss with the results obtained 
by employing coarse grid.

Basic thermal-flow fields under (Pr, Γ, Bd) = (28, 2.0, 0) for 
various Bi are illustrated in Fig. 4. These fields are obtained un-
der the conditions as shown in Fig. 3 (bottom) with the surface 
temperature deviations over the free surface. Left and right halves 
of the liquid bridge for each frame indicate the distributions of 
streamline and temperature T , respectively. Under these condi-
tions, the corresponding eigenfunction of thermal-flow fields for 
(i)-(iii) is the branch (a’), and that for (iv) is the branch (a). For the 
flow with the branch (a’) the position of the vortex center as seen 
in the streamline distribution slightly moves downward as Bi. In 
the adiabatic case (or Bi = 0), one can see two vortices in the flow
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Table 1 Grid-size effect for evaluating Rec under Γ = 2.0 and
Bd = 0.

(Nr,Nθ,Nz) =
(67,61,120) (133,61,240)

Bi = 0 849.6282 884.1281
0.1 709.5720 730.5526
0.2 634.8126 650.0903
0.3 593.1553 605.9405
0.4 572.9500 584.7789
0.5 569.1695 581.2153
0.6 580.8571 594.5563

3.5 406.9298 407.6780
3.6 404.3758 405.1561
3.7 402.1424 402.9518
3.8 400.1979 401.0334
3.9 398.5143 399.3736
4.0 397.0726 398.0722

field. As increasing Bi the flow field evolves with a single vortex, 
and the surface temperature decreases for both branches. In com-
paring (iii) with the branch (a’) and (iv) with the branch (a), one 
cannot detect apparent variation especially in the flow field with 
streamline distribution for the basic flow.

Generally in the experimental researches, the flow patterns had 
been discussed through the spatio-temporal observations of the 
surface temperature and/or its deviation, for instance, by employ-

ing the infrared camera 12,16). The present results imply that one 
would not be able to distinguish the induced flow pattern only by 
the observation of the surface temperature distributions nor by the 
monitoring the basic thermal-flow field if any knowledges not be 
accumulated on induced oscillatory flow patterns before conduct-
ing the experiments.

We thus focus on the three-dimensional structure of the eigen-
function after the onset of instability. Figure 5 (top) illustrates 
the bird-eye views of the isosurfaces of the temperature devia-
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Fig. 4 Basic thermal-flow fields under (Pr, Γ, Bd) = (28, 2.0,
0) for various Bi. These fields are obtained under the
conditions as shown in Fig. 3 (bottom) with the sur-
face temperature deviations over the free surface. Left
and right halves of the liquid bridge for each frame indi-
cate the distributions of streamline and temperature T ,
respectively. Corresponding eigenfunction of thermal-
flow fields for (i)-(iii) is the branch (a’), and that for (iv)
is the branch (a).

z

θ Bi = 1.0 (HTW (a’)) Bi = 1.5 (HTW (a))

0
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̂T = + 0.2

̂T = − 0.2 ̂T = − 0.2

̂T = + 0.2
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Fig. 5 Bird-eye views of the isosurfaces of the temperature
deviation T̂ ± 0.2 (top), and corresponding surface-
temperature deviations T̂ over the free surface (bottom)
for Bi = 1.0 with branch (a’) (left) and Bi = 1.5 with
branch (a) (right) under (Pr, Γ, Bd) = (28, 2.0, 0)

tion T̂ ± 0.2. This figure illustrates the spatial distribution of the
temperature deviation under Bi = 1.0 for the branch (a’) (left) and
under Bi= 1.5 for the branch (a) (right). The figure also illustrates
corresponding distributions of the temperature deviations over the
free surface (bottom). In the case of Bi lower than that for the co-
dimension two point with the branch (a’), the isosurfaces of the
temperature deviation distribute inside the liquid bridge in twisted
shape; when one focuses on positive T̂ , for instance, there exist
a pair of large structures near the hot and cold disks, and those
large structures are connected with thin and twisted structure of
isosurface. The azimuthal positions of those large structures near
the hot and cold disks are separated with a difference of azimuthal
position about π. If one pays attention to the distribution of the
temperature deviation over the free surface, the difference of az-
imuthal position between the relatively hot region near the hot
disk and the relatively cold region near the cold disk is of about
π. In the case of Bi higher than that for the co-dimension two
point with the branch (a), on the other hand, the isosurfaces of
T̂ exhibits rather straight shape along z direction. As seen in
the case of the branch (a’), there exist a pair of large structures
near the hot and cold disks. The connecting part of the isosur-
face between those large structures are different from the case
of the branch (a’); those large structures are connected with thin
and almost flat structure of isosurface. Another difference lies
in the azimuthal positions of those large structures near the hot
and cold disks. In this case, the large structures near the hot and
cold disks are located with a much less difference of azimuthal
position. Such distribution of the large structures of T̂ with less
difference in azimuthal direction is also seen in the shape of the
surface temperature deviations over the free surface. Thus, the
propagation angle or inclination angle of the thermal wave over
the free surface become less than that for the branch (a’).
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3.2 Effect of gravity

We then pay attention to the effect of gravitational accelera-
tion. Figure 6 illustrates the neutral curves under Bd = 0.34 (plots 
in red). This condition corresponds to a system of a liquid bridge 
of 0.75 mm in radius under g = 1g0 condition. The most danger-
ous wave number is also found to be m = 1 under this condition. 
In the figure the results under zero gravity as shown in Fig. 3 are 
also indicated (in black). It is found that the critical Reynolds 
number is not affected by the gravity significantly in a region of 
Bi ≳ 0.7; the neutral curves almost coincide with those under zero 
gravity. That is, the branch (a’) becomes the most unstable eigen-
function in small Bi region, and the most unstable eigenfunction 
is switched to the branch (a) in Bi ≳ 1.2. In a range Bi ≲ 0.7 for the 
branch (a’), the flow field with m = 1 becomes stabilized, or the 
critical Reynolds number becomes slightly higher or stabilized, 
due to the gravitational effect. We find that a new branch with 
another eigenfunction emerges in the region of almost adiabatic 
(Bi ∼ 0), which becomes the most unstable eigenfunction. This 

newly-arisen branch is called as (b) hereafter.
Basic thermal-flow fields under (Pr, Γ, Bd) = (28, 2.0, 0.34) for 

various Bi are illustrated in Fig. 7. Left and right halves of the liq-
uid bridge for each frame indicate the distributions of streamline 
and temperature T , respectively. Corresponding eigenfunction of 
thermal-flow fields for (i)-(ii) is the branch (b), that for (iii)-(iv) 
is the branch (a’), and that for (v)-(vi) is the branch (a). There 
exist two vortices in the flow field (i) with the branch (b); similar 
basic flow field is also observed under the zero gravity condition 
(see Fig. 4 (i)). Such flow field was clearly observed in the mi-
crogravity experiment on ISS with the fluid of higher Pr fluid 21). 
As increasing Bi, a pair of vortices disappear in the thermal-flow 
fields with the branches (a) and (a’). In the case of the branch 
(b), we have a steeper temperature gradient in r direction in the
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Fig. 6 Nuetral curves against the Biot number Bi for liquid
bridge of Pr = 28 with Γ = 2.0 under dynamic Bond
number Bd = 0.34 (plots in red). The most dangerous
wave number is found to be m = 1 for the whole condi-
tions concerned. The results under Bd = 0 for the same
liquid bridge (as shown in Fig. 3) is also plotted (in
black).
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Fig. 7 Basic thermal-flow fields under (Pr, Γ, Bd) = (28, 2.0,
0.34) for various Bi. Left and right halves of the
liquid bridge for each frame indicate the distributions
of streamline and temperature T , respectively. Corre-
sponding eigenfunction of thermal-flow fields for (i)-(ii)
is the branch (b), that for (iii)-(iv) is the branch (a’), and
that for (v)-(vi) is the branch (a).

region of outer-bottom half of the liquid bridge due to the dou-
ble vortices. Such tendencies are detected in the case of Bd = 0 
as well. It is rather difficult to indicate significant effect of the 
gravity on the basic thermal-flow fields comparing to the effect of 
Bi.

The temperature deviations inside the liquid bridge and over 
the free surface in this flow pattern are illustrated in Fig. 7. The 
isosurfaces of T̂ become rather compact, and shift to a region 
close to the hot disk. There exists a large structure near the hot 
disk as seen in the cases of the branches (a) and (a’). The isosur-
faces shrink their shape, and the bottom region of the isosurfaces 
becomes apart from the cold disk. We cannot see any thin re-
gions in the isosurfaces at the middle height as seen in the cases 
of HTWs (a) and (a’), but the isosurfaces exhibit bulge-like struc-
ture there. This must result in a region with a significant variation 
of the surface temperature at midheight as well as the region near 
the hot disk, but not near the cold disk (see the bottom frames in 
the figure). The surface-temperature deviation in the branch (b) 
also consists of a pair of hot and cold spots as that in the branch 
(a). In the branch (b), each spot spreads toward the cold disk al-
most vertically, not obliquely. That is, the relatively hot and cold 
regions spread straightly toward the cold disk; those regions ro-
tates azimuthally at the same azimuthal velocity along the z direc-
tion in matching the phase. High-amplitude T̂ emerges not only 
near the hot disk but also in the middle height. The azimuthal 
positions of those high-amplitude T̂ are almost the same. Near 
the cold disk, on the contrary, the amplitude of the T̂ becomes 
smaller comparing to the cases of the branches (a) and (a’).

Such flow pattern corresponding to the branch (b) was observed 
in the ground experiments with a small-scale liquid bridge 16), and 
also in the microgravity experiment known as ‘Dynamic Surf’ 
conducted in the Japanese Experiment Module ‘Kibo’ on the In-
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Bi = 0.0 Bi = 0.1

z

θ

0 2ππ 0 2ππ

0

1

̂T = + 0.2

̂T = − 0.2 ̂T = − 0.2

̂T = + 0.2

0.2

-0.2

0

Fig. 8 Bird-eye views of the isosurfaces of the temperature
deviation T̂ ± 0.2 (top), and corresponding surface-
temperature deviations T̂ over the free surface (bottom)
for Bi = 0 (left) and 0.1 (right) with branch (b) under
(Pr, Γ, Bd) = (28, 2.0, 0.34) as shown in Fig. 6.

ternational Space Station with a large-scale liquid bridge 21). It
should be noted that Bi must not be zero under the normal grav-
ity as well as microgravity condition even though it would be
quite difficult to evaluate Bi. The results by the ground experi-
ments indicate that the flow pattern corresponding to the branch
(b) becomes dominant for taller (or high-Γ) liquid bridge 16). We

recognize discripancies between the present LSA and the ground
experiments; distributions of Bi over the free surface and ambi-
ent temperature, shape of the liquid bridge, temperature depen-
dency of Pr, and so on. We have not reached any concluding
ideas to explain the reason why flow patterns corresponding to
the branch (b) arise in the ground experiments. And, in the micro-
gravity experiments, the flow pattern corresponding to the branch
(b) emerged under Pr = 112, Γ = 3.0 (AR = H/(2R) = 1.5 with their
definition) and TC

∗ = 15 ◦C, but the flow pattern corresponding to
the branch (a) or (a’) emerged in the same liquid bridge under

TC
∗ = 20 ◦C 21). As aforementioned concerning Fig. 3, the branch

(b) does not appear in a low Bi region under zero gravity condi-
tion, and the branches (a) and (a’) become most dangerous flow
patterns in the range of Bi concerned. It is emphasized, however,
that the dynamic Bond number for the liquid bridge in ‘Dynamic
Surf’ would become commensurate to that in the ground exper-
iments by assuming 10−3g0 for the residual gravity and 30 mm

for the characteristic size of the liquid bridge; that is, zero-Bd ex-
periments were not realized even in low gravity conditions. It is
explained that the heat loss to the ambient through the free surface
of the liquid bridge would increase if one decreases the cold rod

temperature TC
∗ . Thus, such variation corresponds to the situation

of lower Bi, which agrees qualitatively with the present predic-
tion in spite of large difference in Pr. In addition, microgravity 
condition would result in less effect of heat loss than that under 
normal gravity because of less buoyancy effect in the ambient gas

motion. Although we have to investigate the Pr effect, we indicate
that flow patterns with eigenfunction for the branch (b) would be
feasible in the space experiments. Further researches would be
needed for comprehensive understandings on the effect of heat
transfer against the hydrothermal wave instability especially in
large-Pr and/or large-scale liquid bridges.

4. Concluding Remarks

We investigate the effect of heat loss through a free surface 
on the primary instability of thermocapillary-driven convection 
in a geometry of so-called half-zone liquid bridge of high Prandtl 
number fluid by the linear stability analysis. We focus on the flow 
fields induced by the instability; it is found that the bifurcation 
diagram exhibits a significant difference between the cases of the 
Prandtl number Pr = 16 predicted by Xun et al. 24) and 28. The 
target geometry is the straight liquid bridge whose aspect ratio Γ = 
H/R, where H and R are the height and the radius of the bridge, 
respectively. The effect of gravity level is examined in order to 
discuss qualitatively the induced flow fields after the transition 
obtained in the ground-based experiments as well as in on-orbit 
experiments so-called ‘Dynamic Surf’ in the Japan Experiment 
Module ‘Kibo’ aboard the International Space Station (ISS).

We find that two or three different flow patterns arise in the liq-
uid bridge of Γ = 2.0 depending on the gravity effect. Under the 
zero gravity condition, the instability brings two flow patterns, 
named as the branch (a) and (a’) in the present study, depending 
on Bi. In order to distinguish the difference between those two 
eigenmodes, one has to detect the three dimensional distribution 
of the flow field or temperature deviation T̂ . It is indicated that 
it would be difficult to distinguish the flow patterns (a) and (a’) 
by monitoring the distributions of the temperature over the free 
surface and the basic flow pattern in r − z plane. We also indicate 

that a new branch, called (b), emerges in a narrow region near 
the adiabatic conditions (or small Bi) under small dynamic Bond 
number condition. A consideration is made why such flow pattern 
corresponding to the branch (b) was observed in the ground ex-
periments with a small-scale liquid bridge 16), and also in the mi-
crogravity experiment known as ‘Dynamic Surf’ conducted in the 
Japanese Experiment Module ‘Kibo’ on the International Space 
Station 21).
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