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Finite-Size Coherent Structures in Thermocapillary Liquid Bridges
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Abstract

When small particles are suspended in a three-dimensional steady incompressible flow, Lagrangian coherent particle structures can be created 
by dissipative mechanisms which rely either on inertia, buoyancy or particle–boundary interactions. The dissipative effect particles experience 
when moving close to a wall or a free surface can lead to a particular rapid attraction of the particles to periodic, quasi-periodic or strange orbits. 
The particle–boundary interaction dominates the accumulation of particles in thermocapillary liquid bridges of millimetric size if the particles 
are small, giving rise to finite-size c oherent s tructures, d epending o n t he t opological t emplate o f t he u nderlying i ncompressible fl ow. The 
achievements obtained in understanding finite-size coherent structures in liquid bridges are reviewed, commenting the theoretical, experimental 
and numerical developments over the last two decades. Moreover, open questions and perspectives of the research on finite-size Lagrangian 
coherent structures are discussed.
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1. Introduction

The segregation of particles in incompressible, three-
dimensional flows has been extensively studied for turbulent
regimes in pipes, channels and large-scale open flows. It is im-
portant in environmental flows, 1) city planning 2) and man-made
processes. 3) A growing attention is recently being paid to the ac-
cumulation of particles in much smaller systems which operate in
laminar flow regimes. Their characteristic length scale is of the
order of a micron or a millimeter at most, with nano- or micro-
particles suspended in the flow. Typical applications include the
control of precipitate in crystallization processes, 4) drug deliv-
ery, 5) and particle sorting in micron-sized and lab-on-a-chip de-
vices. 6)

The dynamics of a single small particle immersed in a rela-
tively simple unbounded flow can present a wealth of striking
behaviors due to the finite-size of the particle, 7) the particle-to-
fluid density mismatch8) or the Coriolis force in time-periodic
background flows. 9) When confined flows are considered, an ad-
ditional degree of complexity is included in the dynamics of the
particulate system. A particle approaching a boundary experi-
ences a drag and a lift force which are direct results of the interac-
tion between the particle and the boundary (see, e.g., Brenner 10)

for a particle approaching an indeformable boundary). Thus, if
the majority of particles frequently move at a distance from the
boundary comparable to the particle radius, the particle–boundary
interaction cannot be neglected when accurate predictions of the
evolution of the particulate system are aimed at.

An example of a closed laminar flow system for which a strong
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particle segregation is frequently reported, is the thermocapillary
liquid bridge. Suspending micron-sized particles in a millimetric
liquid bridge made from a molten salt Schwabe et al. 11) observed
that the particles arranged themselves along a closed rotating pe-
riodic thread which was wrapped about the main thermocapillary
vortex. The authors termed this phenomenon particle accumula-
tion structure (PAS). Among the most surprising characteristics
of this phenomenon was the very fast attraction, within a few sec-
onds, of the particles to the coherent structure, despite of the small
particle-to-fluid density mismatch and the very small Stokes num-
ber, St = O(10−5), of the particles.

The typical setting in which particle accumulation is reported
consists of a nominally axisymmetric thermocapillary liquid
bridge in which a three-dimensional flow develops due to a hydro-
dynamic instability. For the high-Prandtl-number liquid bridges
employed in experiments, the axisymmetry of the flow is bro-
ken at a critical value of the temperature difference. 12) Above the
threshold, clock- and counterclockwise propagating hydrother-
mal waves with azimuthal wave number m bifurcate supercriti-
cally from the basic flow. 13) Slightly above the critical point the
finite-amplitude hydrothermal wave is either azimuthally travel-
ing or standing. 14) Particle accumulation in liquid bridges has
been experimentally reported only for traveling hydrothermal
waves. Hence, mainly suspensions in traveling hydrothermal
waves are reviewed, hereinafter.

Coherent particulate structures in liquid bridges have been
characterized by Tanaka et al. 15) and Schwabe et al. 16) Their ex-
periments have shown that the accumulation patterns are closed
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threads wrapped around the vortex core of the basic state. A gen-
eral property of PAS is the close approach to the free surface
of the particle thread. The shape of the closed thread of parti-
cles travels azimuthally with the same angular velocity as the hy-
drothermal wave. Individual particles are primarily transported
by the underlying basic vortex flow, while they drift azimuthally
only slowly. Tanaka et al. 15) demonstrated that different accumu-
lation patterns can simultaneously coexist in the same flow and
that the existence of PAS depends very sensitively on the flow
parameters.

The significance of the work of Schwabe et al. 16) is the sys-
tematic variation of the aspect ratio of the liquid bridge, the parti-
cle size and the particle-to-fluid density ratio. Two fundamen-
tal observations were made: (a) only particles from a certain
window of the particle size accumulate, and (b) the particle-to-
fluid density mismatch is not required to observe particle accu-
mulation, since density-matched particles accumulate faster than
heavier particles. Based on these two fundamental results, Hof-
mann and Kuhlmann 17) proposed a reduced-order model to pre-
dict the accumulation of particles by modeling the particle inter-
action with the free surface by an inelastic collision. This model
is based on the motivated assumption that a finite-size particle
cannot deform nor penetrate the interface in the liquid bridges in-
vestigated. Therefore, the particle centroid must stay away from
the interface by (at least) a particle radius which, in turn, was
taken as the only parameter of their inelastic collision model.
In their numerical flow simulations of the hydrothermal waves
they found regions of regular and chaotic streamlines in the co-
rotating frame of reference and explained PAS by a transfer of
particles, via the inelastic particle–boundary collision, from the
chaotic to a regular region of the flow. The creation of attractors
by the dissipative particle–boundary interaction has recently been
confirmed by the two-dimensional fully-resolved simulations of
Romanò and Kuhlmann. 18) The authors employed the smoothed-
profile method 19) to simulate the particle–boundary interaction
based on the Navier–Stokes equations only, without invoking any
interaction model. Based on their fully-resolved results, 18) they
proposed a fit for determining the only scalar parameter, i.e. the
minimum distance between the particle centroid and the liquid–
gas interface, of the model of Hofmann and Kuhlmann 17) and
validated their fit by comparison with experiments. 20)

Further advancements in the understanding of coherent struc-
tures in liquid bridges were made by Muldoon and Kuhlmann, 21)

who employed a closed-form model flow to investigate the effect
of the particle–boundary interaction on the accumulation of par-
ticles. The closed form of the flow allowed an extensive variation
of the radius of density-matched particles, from which the authors
demonstrated a wide variety of intricate scenarios depending on
the particle size. A similar approach was employed by Mukin
and Kuhlmann, 22) who computed the streamline topology in a
three-dimensional thermocapillary liquid bridge for Pr = 4 with

much higher accuracy than Hofmann and Kuhlmann, 17) confirm-
ing the earlier results and providing more details about the accu-
mulation process. The numerical simulations of Refs. 21,22) pre-
dicted the experimental findings of Gotoda et al., 23) who reported
the presence of a particle accumulation structure distributed along
a quasi-axisymmetric attractor (known as toroidal core) and thor-
oughly investigated the morphing of the particle coherent struc-
tures with the Marangoni number. The numerical study of Mul-
doon and Kuhlmann 24) further extended the parameter space in-
vestigated, by considering a wide range of Stokes numbers St and
particle-to-fluid density ratios ρ in order to compare the inertial-
and the boundary-induced particle accumulation for Pr = 4.

Other significant experimental results are due to Toyama et
al., 25) who measured the ranges of existence of particle coher-
ent structures in a 2 cSt silicone-oil liquid bridge as function of
the Marangoni number and the particle radius. Romanò and
Kuhlmann 26) computed, for the first time, the flow topology of
a hydrothermal wave in a high-Prandtl-number liquid bridge of
Pr = 28 and reproduced the experimental results of Toyama et
al.25) Romanò and Kuhlmann 26) correlated the particle accu-
mulation with very slender regular regions of the flow and ex-
plained the coexistence of multiple attractors with the presence
of more than one Kolmogorov–Arnol’d–Moser (KAM) torus, to
which particles could be attracted. Their main achievement was
the unequivocal explanation of the experimental results for the
same Prandtl number by the fundamental mechanism of Hofmann
and Kuhlmann. 17) They also coined the term finite-size coherent
structures (FSCS) to emphasize PAS is a coherent structures. This
notion also signals the coherent structures being due to the finite
particle size, and not due to particle inertia which may lead to
inertial coherent structures. A generalization of the concept of
finite-size coherent structures to other boundary-driven systems
was provided by Romanò et al. 27)

The remaining part of this paper is organized as follows. The
problem is defined and mathematically formulated in Sec. 2. A
short section, Sec. 3, is devoted to general considerations about
Lagrangian-coherent structures. Experimental set-ups and nu-
merical techniques for investigating FSCS in liquid bridges are
presented briefly in Sec. 4. The main Sec. 5 presents a chronologi-
cal overview of the results, subclassified to the four main research
groups who have contributed to the field. Section 6 summarizes
and comments the results obtained, taking stock and highlight-
ing the necessary theoretical interpretation of the accumulation
mechanism in order to be compatible with the experimental re-
sults. Section 7 reports about FSCS in other flows, and Sec. 8
proposes some applications and future perspectives of FSCS in
microfluidics.

2. Statement of the problem and mathematical
modeling

A liquid bridge of an incompressible Newtonian liquid is sus-
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Fig. 1 Schematic of the liquid bridge, assumed cylindrical.
The temperature difference ∆T between the two sup-
porting rods induces a thermocapillary surface stress
which drives the flow (gray arrows). Buoyancy forces
provide an additional driving.

pended in the gap between two coaxial rods of high thermal con-
ductivity which are separated by a distance comparable to the ra-
dius of the rods. A fluid motion is induced by tangential free-
surface stresses, via the thermocapillary effect, by heating the
cylinders differentially. The problem consists of predicting and
measuring the flow and the motion of small spherical particles
suspended in the liquid phase.

2.1 General modeling strategies

Ideally, it would be desirable to solve the Navier–Stokes equa-
tions for the moving boundary problem involving moving solids
(suspended particles) and a moving liquid–gas interface between
the liquid bridge and the ambient gas phase. To date the only
fully-resolving numerical simulations in the above sense, includ-
ing the feedback effect of the particles on the flow, have been
carried out by Romanò and Kuhlmann. 18,28,29) They coupled dis-
continuous Galerkin-finite elements with the smoothed-profile
method, as described in Romanò and Kuhlmann, 19) to compute
the motion of a finite size particle in the incompressible shear
flow in a cavity. Due to the large disparity of the length scales
associated with the liquid bridge, the particle and the lubrica-
tion layer between particle and boundary, the simulations have
been carried out for two-dimensional flows only. A fully-resolved
three-dimensional simulation of a particle suspension in the liquid
bridge remains prohibitively expensive, to date.

Due to this limitation, numerical simulations of FSCS usu-
ally rely on additional assumptions about the fluid- and the solid-
phase. FSCS are typically observed for particles whose densities
are of the same order of magnitude as that of the fluid. Moreover,
the particle size is small compared to the size of the liquid bridge
such that the particle-to-fluid volume fraction φ = O(10−4) is
very small. In this situation a common modeling assumption con-
sists of neglecting the feedback of the particles on the flow as well
as the mutual interaction among particles. This leads to a one-

way-coupling approach, 17) where the fluid flow is solved a priori
and independent of the suspended particles.

A key advantage of the one-way-coupling approach is related
to the flow regime in which FSCS are found: Particle cluster-
ing in liquid bridges is only observed in traveling hydrothermal
waves. If the particle moves in a hydrothermal wave without af-
fecting this flow, the hydrothermal wave can be computed before-
hand and, after being fully developed, transformed into a rotat-
ing frame of reference in which the azimuthally traveling wave
becomes steady. To compute the motion of the particles in the
rotating frame of reference only a single snapshot of the fully
developed hydrothermal wave is required. Hence, the flow field
only needs to be computed once and can be used to vary the parti-
cle size and density. However, also the particle motion equations
need to be transformed into the rotating frame of reference. This
approach has been introduced by Hofmann and Kuhlmann 17) and
has since been used by this group. The computational cost of
these simulations is very low compared to the cost associated with
particle tracking in time-dependent background flows which has
been employed by other groups, see e.g. Melnikov et al. 30) or
Lappa. 31) Although computationally costly, the advantage of the
latter approach is the possibility to assess the effect of a transient
background flow on the particle motion.

2.2 Modeling of the liquid phase

2.2.1 Bulk equations

A liquid bridge consisting of an incompressible Newtonian liq-
uid of density ρf(T ), kinematic viscosity ν(T ) and thermal dif-
fusivity κ(T ) is clamped between two cylindrical, coaxial rods
of radius R. The rods are kept at the mutual distance d and their
axes are aligned parallel to the gravity vector g =−gez. All mate-
rial properties of the liquid are assumed temperature-dependent,
where T denotes the temperature field in the liquid bridge. Both
the rods are kept at constant temperatures, with the bottom rod
being cold at Tcold = T0 − ∆T/2, and the top rod being hot at
Thot = T0+∆T/2, where ∆T = Thot−Tcold is the temperature dif-
ference between the two rods and T0 = (Thot +Tcold)/2 the mean
temperature. For a clean interface the interfacial tension σ(T )
between the liquid bridge and the surrounding gas reads, at linear
order,

σ(T ) = σ0− γ(T −T0), (1)

where σ0 = σ(T0) is the surface tension at the reference temper-
ature T0 and γ = −∂σ/∂T |T=T0

is the negative surface-tension
coefficient. Since γ > 0 for all fluids considered, the tempera-
ture difference will drive the flow along the liquid–gas interface
from the hot to the cold rod. A sketch of the liquid bridge for the
particular case when the shape is cylindrical is depicted in fig. 1.

Further reference quantities can be defined by ρ0 = ρf(T0),
ν0 = ν(T0) and κ0 = κ(T0). Using the thermocapillary scaling
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d, dρ0ν0/γ∆T , γ∆T/ρ0ν0, γ∆T/d and ∆T for length, time, ve-
locity, pressure and temperature, respectively, leads to the non-
dimensional Navier–Stokes, continuity and energy equations

Re(∂t +u ·∇)u =−∇p+∇ · [(ν/ν0)∇u]+Bd θez, (2a)

∇ ·u = 0, (2b)

PrRe(∂t +u ·∇)θ = ∇ · [(κ/κ0)∇θ ] , (2c)

where x is the position vector in polar coordinates (r,φ ,z), t the
time, u the velocity field with polar components (u,v,w), p the
pressure and θ = (T−T0)/∆T the reduced temperature. From the
geometry, momentum and energy balance, four non-dimensional
groups arise: the aspect ratio Γ, the thermocapillary Reynolds
number Re, the Prandtl number Pr and the dynamic Bond number
Bd

Γ =
d
R
, Re =

γ∆T d
ρ0ν2

0
, Pr =

ν0

κ0
, Bd =

βρ0gd2

γ
, (3)

where β is the coefficient of thermal expansion. Alternative to
the Reynolds number, the Marangoni number Ma = Pr×Re can
be used.

2.2.2 Boundary conditions

For a free-boundary problem the conditions to be satisfied on
the moving boundary are frequently simplified by meaningful ap-
proximations. Here, these assumptions concern the shape of the
liquid bridge and the mechanical and thermal coupling between
the liquid and the gas through the free surface.

Since the surface tension σ0 at mean temperature is very high
for the liquids used in experiments, e.g. silicone oils 32) or molten
salts, 16) a good approximation consists of taking the limit of van-
ishing capillary number Ca= γ∆T/σ0→ 0. In this limit any flow-
induced dynamic deformations of the interface are suppressed.
Extensive experimental, 33) theoretical 34) and numerical 35) vali-
dations confirm the validity of this approximation. The advantage
of this approximation is the shape of the liquid bridge can be ob-
tained without solving the bulk equations, as long as the mass
transfer between the liquid and gaseous phases (evaporation or
condensation) is negligible over the time scale of the simulation.

Considering that the viscosity ratio between liquid and gas is
very high, the shear stresses from the gas phase can safely be
neglected. Determining the shape of the liquid–gas interface ξ (z)
reduces to computing the static surface deformation by solving
the axisymmetric Young–Laplace equation

∆p(z) = ∇ ·n+Boz, (4)

where ∆p denotes the hydrostatic pressure jump across the liquid–
gas inteface, n is the outward-pointing normal unit vector, and

Bo =
ρ0gd2

σ0
(5)

the static Bond number (neglecting the density of the gas). When
Bo→ 0, also the gravitational effects on the static surface de-
formation can be neglected and the liquid bridge contour is de-
scribed by a catenoid profile. 36) To determine the shape of the
liquid bridge by solving (4) three conditions are required. With
sharp edges of the solid rods supporting the liquid bridge it is rea-
sonable to assume pinned contact lines. Furthermore, the liquid
bridge must satisfy a volume constraint, leading to

ξ (z =±1/2) =
1
Γ
, (6a)∫ 1/2

−1/2
ξ

2(z)dz = V , (6b)

with the volume ratio V = V/(πR2d), where V is the volume of
liquid suspended between the two rods.

Once the shape of the liquid–gas interface has been deter-
mined, (2) can be solved, subject to the necessary boundary con-
ditions for u and θ . Under the hypothesis that the support rods are
perfect thermal conductors, the fluid-flow boundary conditions at
the hot and the cold rod read

u = v = w = 0, θ =±1/2, on z =±1/2. (7)

Finally, the thermocapillary effect drives the flow by a tangen-
tial stress along r = ξ (z) and also the thermal coupling between
liquid and gas must be considered. Several approaches have been
employed in the literature, 35) depending on the required level of
fidelity of corresponding experiments. Neglecting the tangential
viscous stresses exerted on the interface from the gas phase, the
thermocapillary tangential stress is determined by the temperature
gradient on the interface

t ·S ·n+ t ·∇θ = 0, on r = ξ (z), (8)

where S =∇u+(∇u)T is the stress tensor and t is any of the two
independent tangent vectors on the interface. The surface temper-
ature, in turn, depends on the heat transport in both the liquid and
the gas phase. If, however, the gas around the liquid bridge is
almost at rest, the simplest approach is to treat the interface as an
adiabatic boundary, i.e. n ·∇θ = 0.

Due to the substantial approximations of the boundary con-
ditions, in particular of the thermal conditions, the quantitative
agreement between models and experiments might be compro-
mised. A quite efficient improvement of the adiabatic model con-
sists of using Newton’s law of heat transfer

n ·∇θ =−Bi [θ −θa(z)] , on r = ξ (z), (9)

characterized by the Biot number Bi = hd/k, where k is the liquid
heat conductivity, h the gas heat-transfer coefficient and θa(z) a
suitable gas phase reference temperature distribution. This ap-
proach was recently employed by Romanò and Kuhlmann, 26)
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Fig. 2 Schematic of the PSI model. The particle (green sphere)
which moves close to a boundary is repelled such that
its centroid cannot enter a region at distance ∆ from the
boundary. Hence, during the collision phase, the par-
ticle trajectory (green solid line) experiences a stream-
line hopping from the red to the orange streamline. The
black dot denotes the release point, i.e. the location
where ẏ ·n = 0.

who successfully reproduced the experimental measurements of
the traveling wave frequency and the FSCS in 2 cSt liquid bridges.
A further improvement of the thermal boundary condition, which
is slightly more costly computationally, was recently reported in
Romanò and Kuhlmann, 35) who proposed an explicitly defined
fit to substitute the constant Biot number in (9) by a Biot func-
tion Bi(z,Re,Pr,Γ, ...) and taking θa = −1/2, equal to the cold
wall temperature. This approach is equivalent to correctly spec-
ifying θa(z). If a higher fidelity is desired the gas-phase must
be included in the simulation, 20,37) and the conditions along the
liquid–gas interface turn into kinematic and dynamic boundary
conditions, and an energy balance. We remark that the single-
fluid approximation might be too simplistic when a coaxial gas
flow is imposed on the gas phase which may lead to significant
pressure gradients in the gas phase and/or cause instabilities of
the liquid–gas interface.

2.3 Modeling of the solid phase

In general, the particulate phase is coupled to the fluid flow by
the no-slip boundary conditions on the particle’s surface. The in-
tegral of the normal and shear stresses on the particle’s surface
gives rise to a resultant force F and a torque T exerted on the par-
ticle. The particle trajectory can then be computed integrating the
rigid-body equations which relate the translational and rotational
accelerations of the particle to F and T, respectively.

In the present one-way coupling, the equations of motion of
the particle can be simplified under suitable conditions. Once the
fluid flow is computed, the flow field u is employed to integrate
the particle trajectory. For the motion of sufficiently small and
dilute spherical particles with radius ap the Maxey–Riley equa-
tion 38) for a single particle can be the basis for further simplifi-
cations. A widely used approximation is the simplified Maxey–
Riley (SMR) equation given in Ref. 7) for the motion of the cen-
troid y(t) of the particle in a given flow

ÿ =

(
1

ρ +1/2

)[
− ρ

St
(ẏ−u)+

3
2

Du
Dt
− ρ−1

Fr2 ez

]
, (10)

where D/Dt denotes the material derivative taken in the refer-
ence frame of the flow field. In (10) the Basset history term and
the Faxén corrections are neglected, as well as the Saffman lift
force. When the reference frame is rotating, e.g. with the angu-
lar phase velocity of the hydrothermal wave, (10) must be trans-
formed to the rotating frame of reference, as described in Hof-
mann and Kuhlmann. 17) The particle motion according to (10)
depends on the non-dimensional groups

St =
2
9

ρRea2, ρ =
ρp

ρ0
, Fr =

γ∆T
ν0ρ0
√
gd

. (11)

The Stokes number St is the ratio of the characteristic time of the
particle to that of the fluid flow, a = ap/d the dimensionless par-
ticle radius, ρ is the particle-to-fluid density ratio, and the Froude
number Fr scales the buoyancy force exerted on the particle due
to its density mismatch relative to the fluid.

The SMR equation (10) is a good approximation to the motion
of individual spherical rigid particles if the suspension is dilute
with volume fraction φ ≤O(10−4), if the particles radius ap� d
is small compared to the domain of the flow (St� 1), and if the
density ratio ρ = O(1) is of the order of one. Furthermore, the
particle Reynolds number Rep = aRe� 1 must be small. Since
these conditions are satisfied for typical experiments, the SMR
equation represents a good approximation to the particle motion
as long as the particle moves far from any boundary.

Additional modeling is required when a particle moves close
to a boundary, i.e., close to the support rods or the free surface.
The main effect is an enhanced drag exerted on the particle in the
wall-normal direction. 10) Almost all the numerical simulations
which successfully reproduced experimentally observed FSCS in
closed systems, employed the inelastic collision model of Hof-
mann and Kuhlmann, 17) the so-called particle–surface interaction
(PSI) model. This phenomenological lump model becomes ef-
fective when the particle centroid is to enter a layer of thickness
∆ ≥ a on the boundary. Starting from this event, the normal-to-
boundary velocity of the particle ẏ ·n is annihilated as long as it
is pushed towards the boundary by the flow field, i.e. as long as
ẏ ·n > 0. As soon as ẏ ·n ≤ 0, the PSI model switches off. This
process is sketched in fig. 2. As a result, the PSI model dissi-
pates the normal-to-boundary kinetic energy by means of an im-
pulsive force which realizes the inelastic collision. Further con-
siderations about this model, the interpretation of the particle–
boundary interaction as a streamline hopping and the connection
of the PSI model with dynamical systems theory are reported in
Refs. 17,21,26)

3. Lagrangian coherent structures

Lagrangian coherent structures are distinguished trajectories
or hypersurfaces in a dynamical system which have a major in-
fluence on the transport in the vicinity of these structures. In
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fluid flow such a structure can be a hyperbolic point, e.g. a free
stagnation point, which attracts fluid elements from some direc-
tions (stable manifold of the hyperbolic point) and deflects them
in other directions (unstable manifold of the hyperbolic point).
Therefore, the motion of suspended particles is largely affected
by Lagrangian coherent flow structures if the particle transport is
dominated by advection.

The motion of particles in a flow is governed by equations of
motion which define a dynamical system. In case of an individual
particle the dynamical system is given here by the SMR equation
(10). In the limit of perfect advection, non-interacting particles in
an incompressible flow cannot cluster, because for each particle
∇ · ẏ = ∇ ·u = 0. The fluid flow and the particle flux are volume
preserving. In order that particles get attracted to some attractor,
dissipative effects must enter the dynamic system. In most cases
such dissipative effects are due to forces which make the particles
move on different trajectories than fluid elements. Typically, the
forces which make dynamical system dissipative are due to the
particle’s inertia when ρ 6= 1. These forces act in the bulk of the
fluid. Particulate structures which can result from inertial forces
are called inertial coherent structures and have received much at-
tention in recent years. Coherent structures have been subject of
a focus issue of Chaos 39) and have been reviewed by Haller. 40)

It may happen that the dissipation leading to attractors of par-
ticles in a flow arises only in a thin boundary layer on the bound-
aries of the domain of the flow. The dissipative effect near bound-
aries can derive from the steric effect due to the finite size of the
particle: The centroid of a spherical particle cannot move arbitrar-
ily close to an indeformable boundary. Near such a boundary its
normal-to-boundary motion is hindered by its finite size and ad-
ditional strong normal-to-boundary drag forces arise. Since this
type of dissipation is caused by the finite size of the particle, the
resulting dissipative structures may be called finite-size coherent
structure, to distinguish them form the above mentioned inertial
coherent structures. Both, inertial and finite-size coherent struc-
tures are dissipative structures.

The dissipation required for particle clustering can also come
form particle–particle interactions. If the dynamical system de-
scribing the whole ensemble of interacting particles exhibits at-
tractors which become manifest in a certain particle pattern, this
pattern likewise is a dissipative structure. The collective phe-
nomenon by which interacting particles arrange themselves in a
pattern can be called self-organization.

The work on particulate structures in thermocapillary liquid
bridges has primarily been driven by the quest to understand the
physical mechanisms responsible for the creation of the particular
structures and by the desire to characterize and classify them and
to detect the conditions under which such structures can exists.

4. Numerical and experimental techniques

4.1 Numerical methods

Several numerical techniques have been applied successfully
to solve the equations of motion for the fluid and the particu-
late phase. Leypoldt et al. 13) employed a combination of finite
volumes in radial and axial direction and pseudo-spectral Fourier
modes in azimuthal direction in order to simulate the fluid phase
neglecting the surrounding gas. The same code was used by Hof-
mann and Kuhlmann 17) to compute the fluid flow for Pr = 4 and
Re = 1800. More recently, a three-dimensional finite volume
solver, implemented for unstructured grids in the framework of
OpenFOAM, was employed by Mukin and Kuhlmann 22) and Ro-
manò and Kuhlmann26). Their calculations likewise make use of
a single-fluid approach, but Ref. 26) models the thermal effect of
the surrounding gas by means of Newton’s cooling law, whereas
Ref. 22) considered an adiabatic free surface. Romanò et al. 20)

employed a finite-volume solver to compare the single- and multi-
phase approaches for subcritical Reynolds numbers. All these au-
thors computed the one-way coupled particle motion a posteriori,
after the flow field has become stationary. For supercritical condi-
tions the hydrothermal wave is fully developed when it becomes
stationary in the frame of reference rotating with the hydrother-
mal wave, provided only azimuthal harmonics of the fundamental
wave number are excited. This approach has been proposed by
Hofmann and Kuhlmann. 17) The particle trajectories are usually
integrated by means of a Runge–Kutta method with an adaptive
time step. An investigation of the numerical error arising in dif-
ferent time-integration schemes and its implications for particle
accumulation studies can be found in Ref. 41)

Other approaches have been employed by Melnikov et al. 30)

and Lappa 31). They computed the fluid flow using finite volumes
and finite differences, respectively, integrating the particle trajec-
tories together with the fluid phase. This method requires that, at
each time step, the fluid and the particle phase are integrated si-
multaneously in the laboratory frame of reference, without taking
advantage of the fluid phase being steady in the rotating reference
frame.

4.2 Apparatuses and experimental methods

The interest in thermocapillary in liquid bridges was originally
stimulated by the floating-zone crystal-growth technique. 42) The
liquid bridge was devised as a simplified setup to help understand
the origin of striations in the crystals grown. 43) In an idealization,
called full-zone model, the melding and solidifying interfaces are
replaced by cold flat-ended cylindrical rods with an axisymmetric
heater placed midway between the rods. Owing to the symmetry
of the problem when gravity is disregarded, Schwabe et al. 44) in-
troduced the half-zone model in which the two rods are heated
differentially rather than heating from the gas phase. This setup
also allowed a better control of the driving forces. Henceforth, the
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half zone has become a standard system for investigating thermo-
capillary flow instabilities and for studying particle accumulation.

In their first experiments on particle accumulation Schwabe
et al. 11) used their well-refined apparatus in which a droplet
of molten NaNO3 was suspended between two rods of graphite
whose axes were aligned parallel to the gravity vector (heating
from below). The rods of the liquid bridge had a radius of 10 mm
and were coated pyrolytically. Considering that the average tem-
perature between hot and cold rod was about 633 K, the Prandtl
number of the molten salt was moderately high, i.e. Pr ≈ 7.
This setup had the advantage of very little evaporation from the
molten salt such that experiments could be run for hours. To in-
vestigate the particle segregation phenomenon Schwabe et al. 11)

used either hollow quartz-glass spheres of radius ap ≈ 3 µm, al-
most density matched to the fluid (they estimated ρ ≈ 1.1), or
Al2O3-polishing powder (ap ≈ 7.5 µm and ρ ≈ 2.1). In later
experiments, Schwabe’s group used much smaller liquid bridges
in which the heater was made from sapphire to enable an axial
view. 16,45) They employed d = 2 mm and R = 3 mm, a very large
variety of particle shapes, and a wide range of particle diameters
ap ∈ [1,60] µm and particle-to-fluid density ratios ρ ∈ [0.32,4.8].
Moreover, apart from molten NaNO3, they also employed n-
decane (C10H12, Pr≈ 15), and 1, 2 and 5 cSt silicone oil 15) with
Pr≈ 16,28 and 68, respectively. A typical element of Schwabe’s
experiments is a shield to protect the liquid bridge from exter-
nal perturbations. Thermocouples embedded in the support rods
were used to measure the applied temperature ∆T and very fine
unshielded ones (with 30 µm wire diameter) were placed very
close to the interface to extract the frequency and structure of the
hydrothermal wave as well as its correlation with the particle ac-
cumulation structure.

Using a heater made from sapphire was first introduced by
Kawamura et al. 46) who worked with 2 cSt silicone oil as a test
fluid. Moreover, they developed a technique to carry out three-
dimensional particle-tracking (3D-PTV, see Refs. 46,47)) which
was also used by Tanaka et al. 15) To prevent evaporation the liq-
uid bridge could be placed in a cold environment. 32,48,49) An al-
ternative method to keep the volume of liquid constant is a pre-
cise control of the volume ratio (see e.g. Refs. 20,50)) which can
be achieved using a micro syringe pump which refills the liquid
bridge through a bore hole from the cold rod. This technique re-
quires to measure the volume of liquid which can be achieved,
for axisymmetric shapes, by image processing of suitable side-
view images. Different from Schwabe’s group who measured the
surface temperature by fine thermocouples, Ueno’s group mea-
sured the surface temperature using an infrared camera. 25) Typi-
cal test liquids employed by Ueno et al., 32) as well as by Tanaka et
al., 15) are silicone oils produced by Shin-Etsu. Their ground ex-
periments employed millimetric liquid bridges with d =O(1 mm)
and particles with ap ∈ [2.5,25] µm and ρ ∈ [1.7,3.3].

Also Shevtsova’s group carried out experiments on particle ac-

cumulation in liquid bridges, using the experimental facility in-
herited from Schwabe. 50) They typically employ n-decane rather
than molten salts as a test liquid. In their experiments, they
considered a wide range of particle radii ap ∈ [0.25,40] µm,
particle-to-fluid density ratios ρ ∈ [0.95, 4.8] and several particle
shapes.51) In other setups52–54) with very long cylindrical sup-
port rods a co-axial flow could be established in the gas phase to
study its effect on the critical onset of hydrothermal waves and on
particle accumulation structures.

5. Chronological overview

Particle accumulation in liquid bridges has been investigated
by a number or research groups over more than two decades. Ow-
ing to the wealth of results which led to better understand finite-
size coherent structures, it is worthwhile to review the achieve-
ments made regarding particle accumulation in liquid bridges.
Advancements in the understanding of particle accumulation in
this system have been made by only four research groups. There-
fore, this review is organized in terms of these research groups,
summarizing their results. Within each subsection the achieve-
ments are presented in chronological order to demonstrate how
the more refined and broader view of particle accumulation has
emerged from initial hypotheses and measured correlations.

At the beginning of the following literature overview, particle
accumulation in liquid bridges is addressed as PAS. This is the
established phenomenological nomenclature derived from the ex-
perimental observation of the particle accumulation. Towards the
end of the overview, the terminology finite-size coherent structure
(FSCS) is introduced. It emphasizes that PAS in liquid bridges is
part of a more general phenomenon which is caused by the fi-
nite size of the particles. The understanding of PAS as a FSCS
has evolved only recently. In section 6 the numerical, experimen-
tal and theoretical results are integrated to explain FSCS in the
framework of dynamical systems and to discuss its characteristic
properties.

5.1 Schwabe’s group

The research interest about PAS in liquid bridges started in
1996, when Schwabe et al. 11) discovered that initially evenly dis-
tributed particles tend to accumulate and form particular persis-
tent structures. These structures were named particle accumu-
lation structures (PAS). In 1999 Schwabe 55) published a review
article in which he reviewed his recent findings and elaborated on
future perspectives for investigating PAS. Furthermore, Schwabe
and Frank56) characterized the behavior of particle clouds in a
time-dependent thermocapillary liquid bridge, and discuss the ac-
cumulation of particles in the liquid bridge as an analogy to star
formation and accretion disks. Later, when a deeper understand-
ing of the relevant physics of PAS had evolved, this hypothetical
analogy turned out to be too far-fetched.

The first experiment under microgravity conditions in which
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Fig. 3 Top and side view of m = 3 PAS with m = 3 under
microgravity conditions. 45) The n-decane liquid bridge
flow is realized for R = 3 mm, d = 1.9 mm, ∆T = 12 K
and the particles have ap = 10− 15 µm. The figure is
taken from Schwabe et al. 16)

an unexpected particle behavior was observed was carried out
in the experiment MAUS G 141 on the STS 89. Schwabe and
Frank 57) reported a sectorial PAS1 in steady thermocapillary
flow, even though distinct particle accumulation structures
of oscillatory thermocapillary convection was not observed.
Together, all observations made by Schwabe’s group indicated
that PAS is a physical phenomenon and not some experimen-
tal artifact. In 2000, this conclusion led to the ESA-funded
project AO-2000-091, “Dynamics of Suspended Particles
in Periodic Vortex Flows”. In the framework of this ESA
project a new dedicated microgravity experiment was carried
out on MAXUS-6, launched in 2006. The results, published
by Schwabe et al., 45) confirmed that PAS does not rely on
buoyancy. However, gravity was found to have an effect on the
parameter windows for which the particle coherent structures
are observed. The main focus of the investigations of Schwabe
et al.45) was on the so-called SL1 PAS with fundamental wave
number m = 3, which arises as a closed rotating thread of
particles wrapping three times around the vortex core (fig. 3).

1 In the light of the current knowledge of FSCS this sectorial PAS may
be explained by a depletion effect together with a weak azimuthal sym-
metry breaking.

A further confirmation of the existence of PAS under normal grav-
ity conditions was provided by Tanaka et al., 15) who carried out
a thorough experimental study on ground for a wide range of
parameters. They worked with 2 cSt silicone oil with nominal
Prandtl number Pr = 28 and reported, for the first time, the so-
called SL2 PAS, another line-like particle attractor which wraps
six times around the vortex core in a flow with a fundamental
wave number m = 3. Moreover, they observed that SL1 and
SL2 PAS can coexist and, reconstructing the accumulation pat-
tern, they highlighted that PAS approaches the free surface very
closely. They also reported PAS with different fundamental az-
imuthal wave numbers m = 2, 3, 4 and 5. Particles were even
observed to be attracted to a toroidal core, an accumulation pat-
tern qualitatively different from the line-like coherent structures
such as SL1 and SL2 PAS. Furthermore, Tanaka et al. 15) estab-
lished that the particles of the PAS do not travel azimuthally with
the same velocity as the particulate pattern. Rather, particles con-
tributing to PAS slowly drift in azimuthal direction and opposite
to the azimuthal traveling direction of PAS. The direction and or-
der of magnitude of the particle drift velocity is consistent with
the azimuthal mean flow (average over the (r,ϕ) plane) predicted
by Leypoldt et al. 13) for a traveling hydrothermal wave. Among
the main achievements of Tanaka et al., 15) the topology of PAS is
almost independent of the particle-to-fluid density ratio ρ and of
the Stokes number St. They also showed that the particles move
almost like the fluid, indicating that the fluid flow has topolog-
ical structures which are very similar to the coherent structures
observed. This key feature of PAS can be understood considering
that the typical Stokes numbers are very small and, therefore, a
particle moves very similar as a fluid element.

Schwabe et al. 16) extended the experimental investigation of
Tanaka et al.15), reproducing PAS on the ground in liquid bridges
made of mixed NaN03 and CsN03 melts, as well as bridges made
of n-decane. They systematically measured (by the eye) the for-
mation time of PAS starting from a quasi-random initial distribu-
tion of particles. The study was mainly concerned with the depen-
dence of PAS on the particle parameters a and ρ . Two important
results were experimentally established: (a) the accumulation of
heavy (ρ ≥ 1) particles is fastest when the particle is density-
matched to the fluid (ρ = 1), and (b) only particle radii within a
certain range lead to coherent particle structures, with a certain
optimum particle size for which PAS forms most rapidly. The
authors argued that the fast accumulation within a few periods of
flow oscillation is due to inertial migration in the cross stream di-
rection of a shear flow. Additional information was contributed
by Schwabe and Mizev, 58) who reported a subcritical accumula-
tion pattern termed toroidal shell. Confirmations as well as fur-
ther investigations of this axisymmetric particle structure can be
found in Melnikov et al. 59) and Romanò and Kuhlmann. 20) The
most recent contribution of Schwabe is a review about thermo-
capillary flows 60) which includes a paragraph on PAS in liquid
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Fig. 4 Finite-size coherent structures in an n-decane liquid
bridge. (a) Numerical simulation for ∆T = 9 K (dia-
mond) superposed to the experimental visualization of
PAS for ∆T = 9.75 K. (b) Reconstruction of ten particle
trajectories in the rotating reference frame. The figure
is taken from Melnikov et al. 59)

bridges. Schwabe’s group well deserves the merit of having dis-
covered PAS and of having established its crucial dependence on
a and ρ .

5.2 Shevstova’s group and Lappa

The results obtained by Shevtsova’s group and by Lappa are
treated in a combined section, since these authors proposed very
similar arguments for an interpretation of PAS. In the first inves-
tigation of the subject, Melnikov et al. 30) carried out single-phase
numerical simulations for sodium nitrate (NaNO3) and n-decane
liquid bridges, i.e. the fluids which have been used by Schwabe
et al.16) Employing the SMR equation (10), the authors were
able to reproduce the PAS observed in previous experiments by
Schwabe’s group. In order to avoid particles exit the domain,
they implement the PSI model wit, setting ∆ = a. Based on their
simulations, they concluded that the existence of line-like coher-
ent structures is crucially related to the strength of the flow, given
by the Marangoni number Ma, and to the particle-to-fluid density
ratio ρ . While the dependence on Ma of PAS has been proven
experimentally, the claimed importance of the density ratio is in
conflict with the experimental observation of Schwabe et al., 16)

who pointed out the existence of PAS is strongly correlated with
the particle radius a, whereas ρ > 1 is of lesser importance for
the existence of PAS as long as the particles do not settle.

In a subsequent analysis Pushkin et al. 61) studied a model in
which the flow field is given in closed form. This approach
was aimed at simplifying the modeling effort, but at the same
time to keep the essential physics of the experiments. This ap-
proach has some numerical advantages: The velocity field is
known everywhere in the domain such that no interpolation be-
tween discrete data is required. Moreover, the background flow
is available in closed form and solenoidal. Up to numerical ac-
curacy, the latter property does not add artificial numerical dis-
sipation to the equation of motion for the particle via the veloc-
ity field. Rather than the SMR equation (10), Pushkin et al. 61)

employed the inertial equation, 62) which represents a simplifica-
tion of (10) valid up to linear order in St. Without employing the
PSI model, the authors found what they called ’self-assembly’
of particles in their model flow. They concluded that this ac-
cumulation is the result of a phase-locking mechanism between
fluid- and solid-phase. This conclusion has been criticized by
Kuhlmann and Muldoon, 63) who argued that a synchronization
(hence phase-locking) is not possible in the one-way-coupled sys-
tem of Pushkin et al., 61) because a necessary condition for syn-
chronization is a weak mutual coupling between the particles and
the fluid. Since the flow is computed independently of the par-
ticle suspension, without considering any feedback effect of the
particles on the fluid flow, the mutual-weak-coupling condition is
not satisfied and phase-locking cannot be responsible for the self-
assembly found. Kuhlmann and Muldoon 63) rather argue that
the particles are so small (St� 1) that their trajectories must be
very similar to those of fluid elements (as previously verified by
the experiments of Tanaka et al. 15)), making the particle almost
slaved to the flow which is a strong one-sided coupling. Addi-
tional investigations of Kuhlmann and Muldoon 64) considered a
similar model flow and demonstrated that particle accumulation
can be produced by inertia, by particle–boundary interaction or
by both. For the experimental parameters of interest St� 1 and
ρ = O(1), they also pointed out the inertial time scale is much
longer than what was experimentally measured by Schwabe et
al., 16) whereas the clustering due to particle–boundary interaction
is much faster and compatible with the experimental evidence.
Kuhlmann and Muldoon 64) employed a ninth-order integration
scheme to carry out the simulations, but did not manage to re-
produce the results of Pushkin et al. 61). In a subsequent paper,
Muldoon and Kuhlmann 41) demonstrated that particle accumu-
lation similar to the one found by Pushkin et al. 61) can also be
caused by accumulation of numerical errors, if low-order schemes
and/or large integration time steps are employed. Pushkin et al. 65)

replied to the comment of Kuhlmann and Muldoon 63) stating that
their simulations do not include any particle–boundary interac-
tion model. Without commenting on the issue of numerically-
induced coherent structures, they state the particle accumulation
they observe is due to inertia and that their model cannot explain
the particle coherent structures observed by Schwabe et al. 16) for
density-matched particles.

Further experimental evidence of particle accumulation in liq-
uid bridges was reported by Melnikov et al., 66) who employed
relatively large particles with radii ap = 20 and 100 µm which
were 8% heavier than the liquid phase (n-decane). Even though
the authors claim the clustering of particles is due to inertia and
to the synchronization process between particles and fluid phase,
they used one-way-coupled simulations and the PSI model of
Hofmann and Kuhlmann. 17) The use of the PSI model was seen
as a necessity to keep the particle inside the computational do-
main, but the implications of the PSI model for the global par-
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ticle motion was disregarded. Their results confirm that model-
ing the particulate phase by the SMR equation including inelas-
tic boundary collision represents a good minimal model which
well captures their experiments. The same approach was used
in Melnikov et al., 59) where experimental results of particle ac-
cumulation in form of a m = 2 PAS wrapping around a toroidal
core were well reproduced by the SMR equation supplemented
with the PSI model (fig. 4). They further elaborated on the phase-
locking mechanism as the process responsible of the clustering of
particles, even if this mechanism is in evident contradiction with
the one-way coupling employed in the their numerical model.

Also Lappa31) dwelled on the phase-locking mechanism of
Pushkin et al., 61) correlating it with the axial vorticity of the flow
with the intention to validate and generalize the theoretical inter-
pretation of Pushkin et al. 61) Despite of the aforementioned nu-
merical issues associated with low-order methods, he employed a
first-order Euler integrator with a relatively small time step. No
particle–boundary interaction model was explicitly mentioned by
Lappa. 31) In a successive study, 67) Lappa investigated the effect
of g-jitter on the accumulation of particles in liquid bridges. In
order to take into account the effect of the time-dependence of
the flow field on the particle trajectories a far more complex ver-
sion of the Maxey–Riley equation was employed. Using the same
numerical approach as in his previous study, he found a wealth of
different particle coherent structures depending on the amplitude
and frequency of the g-jitter acceleration. In a private communi-
cation with one of the present authors (H. C. K.), Lappa clarified
that his works 31,67) were carried out using a peculiar particle–
boundary interaction model, not explicitly mentioned in the two
articles. In his approach a variant of the PSI model with ∆ = a
was used for inelastic particle–boundary interactions all along
the solid walls, whereas the particle–free surface interactions are
treated as inelastic only in a narrow region near the hot and the
cold rods. In a following paper, Lappa 68) investigated the ac-
cumulation of particles in liquid bridges when the flow arises as
a standing hydrothermal wave. To explain the particle coherent
structures found, the argument about axial vorticity and wave-
interference dynamics was iterated. Unfortunately, again no men-
tion was made of the treatment of the particle motion near the
boundaries.

The debate between Shevtsova’s and Kuhlmann’s group about
the physical mechanism responsible for the particle-accumulation
phenomenon continued with Kuhlmann and Muldoon. 69) They
commented on Melnikov et al., 59) stating that the phase-locking
mechanism cannot apply, because the necessary conditions for
synchronization are not satisfied. In their rebuttal, Melnikov et
al. 70) argued that the hydrothermal wave can be regarded as the
weak force needed by the particulate dynamical system to syn-
chronize. They do not explain, however, which weak coupling
feedback is exerted by the particulate system on the fluid flow.
It is clear, however, that their one-way-coupled simulations, in-

tended as a proof of principle, exclude the feedback of the parti-
cles on the fluid flow.

Melnikov et al. 50) investigated the effect of the filling factor V

on the formation of particle accumulation structures with m = 2
in a n-decane liquid bridge. In a follow-up study, Gotoda et al. 51)

carried out additional experiments in n-decane liquid bridges,
making use of particles of different radii a and density ratios ρ .
They found that line-like accumulation structures such as SL1 and
SL2 PAS can each be global attractors for the particle suspension.
But for certain parameters they can also coexist, such that all par-
ticles are finally attracted to either of the two structures. An im-
portant result of their experimental study is the assessment of the
importance of particle–particle interactions. It was observed that
the coherent structures forming for individual monodisperse sus-
pensions of particles of two different sizes might not form when
the two kinds of particles are combined in a polydisperse sus-
pension. Furthermore, they observed a periodic behavior of the
particulate structure during which it vanishes and reappears peri-
odically. In their most recent work on particle attractors in liquid
bridges, Melnikov and Shevtsova 71) considered particles which
are almost density-matched to the liquid. Their one-way-coupled
numerical simulations included the collision model of Hofmann
and Kuhlmann, 17) either on all boundaries or on the solid support
rods only. Different from their previous studies, Melnikov and
Shevtsova 71) described the particles to be in synchronous motion
with the fluid flow, i.e. the particle dynamics is slaved to the flow,
rather than claiming phase-locking of particle and flow by means
of synchronization. They addressed the particle–boundary colli-
sion as well as the particle inertia as possible causes of the PAS
obtained and confirmed that particles may accumulate faster due
to the collisions than due to inertia.

5.3 Ueno’s group

The group of Ueno has inherited the experience regarding PAS
of Kawamura’s research group and significantly extended the
work. Kawamura et al. 48) reported the depletion of particles
in the near-axis region inside the liquid bridge. This depletion
mechanism was explained almost a decade later by Kuhlmann
and Muldoon 21) by taking into account the streamline hopping
experienced by the particles when they interact with the free sur-
face, an effect numerically taken into account by the PSI model.
The same kind of depletion patterns are documented in Kawa-
mura et al.72) and Ueno et al., 32) who reported several accumu-
lation patterns and classified the flow into eight different regimes
according to the observed particle patterns. In a following study,
Noguchi et al. 47) reported the depletion zones, the line-like par-
ticle coherent structures and also a quasi-axisymmetric toroidal
core of particles, which is most likely hollow and is very similar
to the toroidal shell observed under subcritical conditions. The
toroidal core of particles can be transient or persistent depending
on the flow and particle parameters. The study is also of technical

360201–10



Finite-Size Coherent Structures in Thermocapillary Liquid Bridges

Fig. 5 Coaxial views on PAS through the transparent heated
rod. Left: SL1 PAS wrapping around a toroidal
core, middle: SL1 and period-doubled SL2 PAS,
right: period-doubled SL2 PAS. The images, repro-
duced from Toyama et al., 25) show 500 frames of a
video record averaged in the rotating frame of reference.
The hydrothermal wave and PAS co-rotate in counter-
clockwise direction.

significance, since three-dimensional particle-tracking velocime-
try (3D-PTV) to characterize the particle accumulation has been
introduced for the first time. Along the same line, the study of
Nishimura et al. 73) is to be mentioned.

The important study of Tanaka et al., 15) carried out in col-
laboration with Schwabe’s group, has already been mentioned
in section 5.1. In the same year, a review article of Kawamura
and Ueno 74) on thermocapillary liquid bridges includes a section
about accumulation of particles. The 3D-PTV technique elabo-
rated by Noguchi et al. 47) was further exploited by Abe et al., 75)

who studied the effect of the filling factor V on the accumulation
patterns. They reported a slight change of the attractor shape,
while the fundamental line-like accumulation patterns remained
a robust feature for 0.8 < V < 1.2. Along the same line of inves-
tigation are the publications of Ueno et al. 76) and Abe et al.77) In
the review papers of Kawamura et al. 78,79) the accumulation of
particles in thermocapillary liquid bridges is presented as one of
the primary scientific topics of the space experiment MEIS-1 of
JASMA. Another parametric study about the accumulation of par-
ticles in liquid bridges was carried out by Niigaki and Ueno, 80)

who also investigated the effect on PAS of a co-axial flow in the
ambient gas phase. The two topics, PAS and the influence of
an ambient gas flow on the thermocapillary convection, are the
primary objectives of the planned Japanese–European space ex-
periment JEREMI.

The particle accumulation in high-Prandtl-number liquid
bridges (2-cSt silicone oil, Pr = 28) was investigated by Gotoda
et al. 81) They mounted a coaxial cylindrical shield around the
liquid bridge, a method originally used by Preisser et al., 82) to re-
duce external perturbations from the gas phase. Under supercriti-
cal conditions and when the thermocapillary Reynolds number is
not to large, Gotoda et al. 81) found a toroidal core of particles in
addition to the usual particulate coherent structures. Moreover,
they measured the formation time of line-like structures to be
≈ d2/κ . This result, obtained for Pr = 28, is larger than what was

measured by Schwabe et al. 16) for lower-Prandtl-number liquid
bridges. We stress, however, that the formation time of PAS can-
not be directly correlated with the thermal diffusion time, since
the thermal diffusion does not directly enter in the dynamical
system of the particle motion (10). The publication of Gotoda
et al. 51) on experiments with n-decane (m = 2) resulted from a
collaboration between Ueno’s and Shevtsova’s group (see section
5.2). In a following study, Gotoda et al. 23) went back to 2-cSt-
silicone-oil liquid bridges (m = 3), varying the thermocapillary
Reynolds number in small steps and making use of particles with
two different diameters (15 and 30 µm) and different densities.
Upon an increase of Re, the characteristic depletion zone near
the axis is observed in the particle suspension. Further increasing
Re, the particle depletion pattern evolves into the core of particles
and finally into SL1 PAS. If the Reynolds number is too high, the
SL1 attractor disappears. Among the most interesting findings
of Gotoda et al. 23) is a period-doubled coherent structure which
was numerically predicted before by Mukin and Kuhlmann. 22)

Another important result of Gotoda et al. 23) is the experimental
proof of the correlation between PAS and the fluid flow. The au-
thors found that the accumulation of the particle is synchronous
to the flow. Moreover, the focusing of the particles to the line-like
attractor is not correlated with the cold spot of the hydrothermal
wave on the free surface, as was speculated by Schwabe et al. 16)

Along the same line of Gotoda et al., 23) Toyama et al. 25) investi-
gated the existence range of SL1 and SL2 PAS depending on Ma,
Γ and a. They confirmed that SL1 and SL2 PAS can coexist for
certain parameter combination, or arise individually as global at-
tractors (fig. 5). The formation times of the accumulation patterns
were measured and, once again, the free surface temperature was
monitored to characterize the phase relation between PAS and the
hydrothermal wave.

5.4 Kuhlmann’s group

The research carried out in Kuhlmann’s group makes frequent
use of dynamical system theory to place PAS in a more general
and solid theoretical framework. Their first investigation 83) stud-
ied the effect of added mass, pressure gradient, Stokes drag and
buoyancy for particles in a Taylor–Green vortex with ρ = 2. Their
main result was the characterization of limit cycles for the par-
ticulate dynamical system and, upon an increase of the Stokes
number, they find a period-doubling sequence which follows the
Feigenbaum scenario. A following paper of Domesi 84) intro-
duced a fully elastic particle–boundary interaction model, which
was used to compute the accumulation of particles in subcrit-
ical thermocapillary liquid bridges. A different modeling ap-
proach was taken by Hofmann and Kuhlmann, 17) who treated
the particle–boundary interaction as an inelastic collision which
dissipates the particle kinetic energy in normal-to-boundary di-
rection. They introduced the PSI model used in most of the nu-
merical studies (not only of Kuhlmann’s group) and which can
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be considered an approximation to the particle–free-surface inter-
action which has turned out to be a key factor for PAS. Making
use of the stationarity of the fluid flow in a reference frame ro-
tating with the hydrothermal wave, Hofmann and Kuhlmann 17)

transformed the SMR equation into the rotating frame of refer-
ence. The particle trajectories were then integrated in the rotating
frame, utilizing that the particles do not affect the flow in one-way
coupling. This approach provides an enormous saving of compu-
tational resources and is used in all the numerical investigations of
Kuhlmann’s group. Another important advance of Hofmann and
Kuhlmann 17) was to link the particle accumulation to the flow
topology and, in particular, to the Kolmogorov–Arnol’d–Moser
(KAM) tori, which very closely resemble the particle attractors.
The groundwork theory proposed in Hofmann and Kuhlmann 17)

explained the accumulation phenomenon as a transfer of particles
from the chaotic to the regular regions (KAM tori) of the flow,
made possible by the particle–boundary interaction. This inter-
pretation of PAS does not rely on the particle inertia and well ex-
plains the accumulation of density-matched particles experimen-
tally observed by Schwabe et al. 16) An in-depth investigation of
the role of the KAM tori and the focussing mechanism of parti-
cles inside of the KAM tori, as well as the role for PAS of the
particle size was also carried out by Hofmann and Kuhlmann. 17)

Inspired by the model flow of Pushkin et al., 61) the results
of which have been discussed in Sec. 5.2, Kuhlmann and Mul-
doon 64) proposed a flow field in closed-form which was fitted to
the numerically simulated flow in a thermocapillary liquid bridge
for Pr = 4 and Re = 1800. Employing their new model flow,
Kuhlmann and Muldoon85) explained in detail the particle accu-
mulation mechanism due to particle–boundary interactions, dis-
cussing the necessary conditions to observe line-like coherent
structures. In a following study, Muldoon and Kuhlmann 21) used
their model flow to further investigate the accumulation of par-
ticles in the liquid bridge. They carried out an extensive analy-
sis in terms of particle radius, explained particle depletion zones
as a phenomenon produced by the particle–boundary interaction
and predicted line-like, tubular and strange PAS. Multiple PAS as
well as a simply periodic particle attractor with fundamental wave
number m = 1 was also predicted by Muldoon and Kuhlmann 21),
similar to the one later found by Gotoda et al. 51) Furthermore,
a quantity K, based on box counting, was introduced to mea-
sure the instantaneous degree of particle segregation in order to
mathematically define the formation time of PAS. In a subsequent
study Muldoon and Kuhlmann 41) pointed out the important role
of numerical error accumulation in computing particle trajecto-
ries. The corresponding implications for low-order integration
schemes have been discussed above.

Mukin and Kuhlmann 22) accurately characterized the numer-
ical flow topology, in the rotating reference frame for Pr = 4
and three supercritical Reynolds numbers. The accumulation of
density-matched particles was analyzed for Re = 1800 as func-

tion of the interaction length ∆ of the PSI model which is the
only parameter of this model. The accumulation of particles was
explained in correlation with the reconstructed KAM tori of the
flow, within which the line-like attractors are typically located.
Moreover, the period-doubling of the particle attractor was pre-
dicted for moderately large particles. The reason for the period
doubling was explained within the framework of the advection
equation (ẏ = u) supplemented by the PSI model. Additional
simulations of purely advected particles which interact with all
the boundaries according to the PSI model are reported in Mul-
doon and Kuhlmann, 86) who varied the interaction length ∆ to
investigate all the possible accumulation patterns which are pre-
dicted for the particulate dynamical system in dependence on the
particle radius. Several qualitatively different coherent structures
were reported upon an increase of ∆.

A joint paper87) by scientists from all groups working on PAS
gives a very brief overview on the different results obtained at that
time. Kuhlmann et al. 88) pointed out that the streamline crowding
near the driving boundary of the liquid bridge (free surface) is a
flow feature which tends to promote PAS. Comparing the forma-
tion times of coherent structures induced by inertia with those by
particle–free-surface collisions, it was concluded that the exper-
imental results of Schwabe et al. 16) can only be explained if the
particle–boundary interaction is taken into account. Pure inertial
attraction was found to have a formation time which is two or-
ders of magnitude larger than what is measured experimentally.
The same conclusion was drawn for the accumulation of par-
ticles reported in the other experiments: the experimental time
scale is compatible with collision-induced particle accumulation
and not with inertial coherent structures. Kuhlmann et al. 88) also
transformed the experimental videos from the laboratory to the
rotating frame of reference and time-averaged over many indi-
vidual video frames to ease the comparison of experimental re-
sults with numerical predictions. This post-processing technique
has now become a standard procedure for the global visualiza-
tion of PAS in liquid-bridge experiments. Another analysis of
the time scale of PAS is due to Kuhlmann and Lemée, 89) who
considered the temporal evolution of the depletion zone, correlat-
ing the turnover time of individual particles in the axisymmetric
part of the model flow of Muldoon and Kuhlmann 21) with the
evolution of the depletion volume. The resulting time scale esti-
mate was found to well agree with the experimental time scales
measured by Schwabe et al. 16) The most recent numerical study
of particle accumulation in liquid bridges with Pr = 4 was car-
ried out by Muldoon and Kuhlmann, 24) who systematically var-
ied the particle radius and the particle-to-fluid density ratio. For
∆ = 0 they retrieved the inertial time scale such that their accu-
mulation measure K(t) becomes universal when the time is re-
scaled t → t ′ = t|ρ − 1|St/ρ , yielding an inertial formation time
∼ ρ/(|ρ−1|St). This is consistent with the findings of Kuhlmann
et al.88) and confirms that the experimentally reported accumula-
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Fig. 6 A finite-size Lagrangian coherent structure (PAS) made
by 1000 particles (dark spheres) forms in a thin KAM
torus (not shown) slightly outside of the main KAM
torus (dark-gray) for ∆ = 0.00552, Γ = 0.68, Re = 1600
and Pr = 28. The temperature iso-surface θ = 1/2
(light-gray) of the hydrothermal wave is strongly af-
fected by the flow. The structure is shown at t = 3d2/κ

after particle initialization at random positions. The fig-
ure is taken from Romanò and Kuhlmann. 26)

tion structures cannot be explained as inertial coherent structures,
in particular, not in the limit ρ → 1. When the PSI model is ac-
tivated, the coherent particle structures form much more rapidly,
consistent with the experimental data. Moreover, Muldoon and
Kuhlmann 24) investigated the effect of the artificial boundary
conditions used by Lappa 67) and found that the accumulation pat-
terns reported in Lappa’s studies might be a mere result of the fic-
titious boundary repulsion on strips of the free surface introduced
by the author to prevent the particles from leaving the domain.

Romanò and Kuhlmann 29) carried out fully-resolved simula-
tions of particles near moving walls and shear surfaces. They
considered two-dimensional flows and numerically resolved all
the relevant scales of the flow: the macroscopic fluid flow scale
(∼ d), the particle scale (∼ a), and the lubrication length scale δ

of the gap between the particle’s surface and the indeformable
boundary. Their fully-resolved calculations revealed that the
particle centroid indeed moves a wide distance nearly parallel
to the tangentially moving boundary with a minimum distance
∆ = a + δ . This result confirmed that the PSI model can be
intended as a zeroth-order approximation to the actual particle–
boundary dynamics, giving physical motivation to the inelastic
collision approach. Considering ρ = 2, they found that a parti-
cle in a shear-driven square cavity with Re = 1000 is displaced
away from the moving boundary even more than what is pre-
dicted by the model of Hofmann and Kuhlmann 17) who assumed
∆ = a. This confirmed the hypothesis that the lubrication gap
δ between the particle surface and the boundaries may not be

negligible. In a following study Romanò and Kuhlmann 18) car-
ried out fully-resolved simulations of a particle in a shear-driven
square cavity for Re = 1000 and Pr→ 0. Both, the particle ra-
dius and the particle-to-fluid density ratio were targeted. Consid-
ering particles slightly heavier than the fluid, they computed the
two-dimensional particle attractors and proposed a fit of the fully-
resolved minimum lubrication gap δ (a,ρ) as function of the par-
ticle radius a and the particle-to-fluid density ratio ρ . These fits
were used to determine the scalar parameter ∆ of the PSI model.
Using the interaction parameter ∆ obtained in this way, the trajec-
tories from the one-way-coupled simulations were in very good
agreement with the trajectories from the fully-resolved simula-
tions. A further confirmation of the correlations proposed by Ro-
manò and Kuhlmann 18) was reported in Romanò et al., 20) who
compared one-way-coupled simulations of a particle in a subcrit-
ical liquid bridge with corresponding experiments, well predict-
ing the most important characteristic parameters of the particle
attractor, i.e. its minimum and maximum radial coordinate.

The most recent publications on PAS in thermocapillary liq-
uid bridges are due to Romanò and Kuhlmann. 26,27) In Ref. 26)

the Lagrangian topology of a high-Prandtl-number fluid flow
(Pr = 28.5) was obtained in the frame of reference rotating with
the hydrothermal wave. These results allowed, for the first time,
to compare numerical simulations with the abundant experimen-
tal results of Ueno’s group for 2 cSt silicone oil. The strong cor-
relation between flow topology and particle attractors was, once
again, confirmed and the numerical predictions of PAS of Ro-
manò and Kuhlmann 26) (see fig. 6) agreed very well with the co-
herent structures measured by Toyama et al. 25) With help of the
flow topology, Romanò and Kuhlmann 26) could explain why SL1
and SL2 PAS coexist for Re = 1850: There is a narrow window
of Reynolds numbers within which two KAM tori coexist, 1T 3

3
and 1T 6

3 , which very well resemble the SL1 and SL2 particle at-
tractors, respectively. For Re = 1600 and Re = 1750 only SL1
PAS is observed, since the fluid flow topology admits only the
1T 3

3 KAM torus. On the other hand, for Re = 1950 only SL2 PAS
is experimentally reported, because only the 1T 6

3 KAM torus is
present.

As another important result, Romanò and Kuhlmann 26) could
prove that the accumulation of particles found in the experiments
of Ueno’s group are essentially due to particle–free-surface in-
teraction and that inertial effects are of very minor significance.
Even excluding inertial forces from the particle motion model, the
simulations of Romanò and Kuhlmann 26) well capture the exper-
imental observations. This led the authors to coin the new term of
finite-size coherent structures (FSCS). This terminology is used
to emphasize that the accumulation of particles in small thermo-
capillary liquid bridges is caused by an essentially non-inertial
mechanism. As should have become clear, this mechanism is
based on the particle size. This is qualitatively different from
the well-known inertial coherent structures. 40) Moreover, FSCS
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indicates that the particle attractors are strongly coherent, which
is not very well expressed by the established name PAS. Another
aspect which speaks in favor of FSCS is its more general impor-
tance also in other flow systems with non-thermocapillary surface
forces. Theoretical aspects of FSCS are discussed in Romanò et
al., 27) where a generalization of FSCS is proposed to a whole
subclass of all boundary-driven flows.

6. Phenomenology of FSCS

Having summarized the literature on particle accumulation in
liquid bridges, we now give a brief description of the essential
ingredients to FSCS in three-dimensional, steady, incompressible
flows. Since the flow properties and the mechanisms of parti-
cle accumulation leading to FSCS are not restricted to the flow
in thermocapillary liquid bridges, the more general character of
FSCS becomes clear.

As proven by the studies of Kuhlmann’s group, the correlation
between flow topology (where does a fluid element go?) and co-
herent particle structures (where does a particle go?) is crucial
for understanding FSCS. A key feature of the flow topology in
any three-dimensional, steady, incompressible flow is that the tra-
jectories of fluid elements (streamlines in steady flow) are either
chaotic or regular. 90) The flow does not need to be steady in the
laboratory frame, is suffices that the flow is steady in some frame
of reference (e.g., rotating or translating). Chaotic streamlines
depend sensitively on the initial condition, while regular stream-
lines are periodic or quasi-periodic. For two-dimensional steady
flow all streamlines are regular (periodic in a closed system). As
the flow becomes three-dimensional, e.g. by a hydrodynamic in-
stability, part of the streamlines become chaotic. Typically, there
exists a range of Reynolds numbers in which chaotic and regular
streamlines coexist, and where the regular, quasi-periodic stream-
lines arise in the form of KAM tori. Both types of streamlines are
important for FSCS: in the region of chaotic streamlines (chaotic
sea) fluid elements are usually well mixed, and, based on the er-
godicity assumption, any fluid element from the chaotic region
will visit the whole subvolume occupied by chaotic streamlines.
On the contrary, fluid elements do not get well mixed in the reg-
ular regions of the flow, because any fluid element is restricted to
move on a single KAM torus. Therefore, the fluid contained in the
regular regions is sealed from the fluid in the chaotic region(s).

The property of the fluid being sealed in the KAM tori is in-
herited by a suspended particle, if it moves like a tracer, i.e. if
it is convected, satisfying ẏ = u. While this is not exactly the
case, it is a very good assumption if St� 1, ρ = O(1), if buoy-
ancy forces are small (e.g. under microgravity conditions) and
the particle moves far away from the boundaries. Also each par-
ticle of an ensemble of particles nearly moves like the fluid, if
the particle-to-fluid volume ratio is φ � 1 and particle–particle
interactions can be neglected (if the local density of particles re-
mains small). In this case, the dynamics of the suspension can be

modeled as a superposition of multiple single-particle dynamics.
Under these conditions, particles initially located in the chaotic
sea tend to explore, in the course of time, the whole chaotic sea.
Particles initially located in a KAM torus of the flow tend to re-
main in the KAM torus. If all particles would perfectly inherit the
motion of fluid elements, particle accumulation would be impos-
sible, because of the incompressibility of the flow ∇ ·u = 0. In
fact, a three-dimensional, steady, incompressible flow is equiva-
lent to a piecewise Hamiltonian with 1.5 degrees of freedom 91)

and, hence, cannot admit any accumulation. Therefore, small de-
viations of the particle trajectories from those of fluid elements
are necessary for the existence of FSCS.

Deviations of particle trajectories from trajectories of fluid el-
ements can arise in the bulk for finite-size particles. However,
these deviations vanish as the particle size tends to zero a→ 0,
but remains finite with a 6= 0. In this limit, which differs from
setting a = 0, particles are advected in the bulk, but not near the
boundaries, where the particle size must be taken into account in-
side a boundary layer of size O(a). The situation is conceptually
similar to Prandtl’s boundary layer, where viscosity can be ne-
glected everywhere, except for a thin boundary layer on the wall.
Therefore, the trajectories of small particles deviate from trajec-
tories of fluid elements near indeformable boundaries. In ther-
mocapillary liquid bridges this effect is important near the free
surface, because the streamlines are crowed there. The devia-
tion of the particle trajectories from those of fluid elements near a
boundary causes particles originally moving in the chaotic sea to
be transferred to a regular region. The details of this process have
been explained by Hofmann and Kuhlmann. 17) Such a transfer,
however, is possible only if a KAM torus exists which enters the
boundary layer of thickness O(a) which can receive the particles.
Once a particle has entered a KAM torus it can be trapped there
forever. Exceptions and complications are discussed in Mukin
and Kuhlmann. 22)

In the above approximation FSCS can be understood as the at-
traction of individual particles to a periodic or quasi-periodic tra-
jectory. The single particle process can also be understood in the
framework of dynamical systems: If the particle–boundary inter-
action in the layer of thickness O(a) is absent, the phase space
of the particle motion is identical to the physical space occupied
by the liquid, because specifying the initial location of the parti-
cle defines its trajectory for all times. In that case the dynamical
system is Hamiltonian, attractors do not exist and the divergence
of the flux in phase space is zero: ∇ · ẏ = ∇ ·u = 0. The particle–
boundary interaction, however, introduces a dissipation, because
the particle experiences a normal-to-wall drag force in the bound-
ary layer, which is a sink of kinetic energy of the particle. This
makes the dynamical system dissipative such that attractors of the
particle motion come into existence. Note, the conditions for the
existence of a FSCS are independent of whether the flow system
is a thermocapillary liquid bridge or not, the above conditions can
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be satisfied by a whole class of flows.
We would like to point out that the concept of FSCS as a single

particle process must be extended, if the system becomes more
complex. A modification is required if, e.g., the density of par-
ticles is too large globally or locally (as in the final stage of the
FSCS) such that particle–particle interactions can no longer be
neglected. For instance, the destruction of FSCS experimentally
observed by Gotoda et al. 51) could be caused by particle–particle
interactions. Another aspect not included in the above simpli-
fied scenario is the dissipation due to the particle–boundary in-
teraction may be strong enough to create attracting orbits even
in weakly chaotic regions of the flow (characterized by small
Lyapunov exponents), as was observed by Kuhlmann and Mul-
doon 92) and Romanò and Kuhlmann. 26)

7. FSCS in other flow systems

In a number of microsystems, particle accumulations have been
reported which can be classified as FSCS. For instance, the trap-
ping of cells, bacteria and particles in micro-channels and bio-
films has been reported by Yazdi and Ardekani 93) and Karimi
and Ardekani. 94) In their experiments, particles were found to
accumulate in the streaming flow near the surface of a rapidly
oscillating gas bubble. Other examples of FSCS in bio-micro-
fluidics were reported by Wang et al., 95,96) who also used stream-
ing flows. They suggested FSCS as an effective size-sensitive
sorting mechanism for particles moving near boundaries.

Finite-size coherent structures have been found also in lid-
driven cavities by Romanò 101) and Kuhlmann et al., 102) who
achieved a very good agreement between numerical predictions
of the particle motion and corresponding particle-tracking exper-
iments. Another experimental evidence for FSCS in lid-driven
cavities was provided by Wu et al., 103), again pointing out the
strong correlation between FSCS and fluid flow topology. Along
the same line, Romanò et al. 27) reported an excellent compari-
son between experimental particle tracking and one-way-coupled
numerical simulations carried out using either the SMR equation
(10) or perfect advection for modeling the particle motion in the
bulk of the cavity. In both the cases, the particle-motion model
was supplemented with the PSI model when the particle moves
close to a boundary. The most recent study about FSCS in the
lid-driven cavity is due to Romanò et al. 104), who numerically
demonstrated the creation of coherent particle structures in a two-
sided lid-driven cavity. For the first time, a continuous particle–
boundary interaction model derived from lubrication theory has
been implemented. Switching the particle–boundary interaction
on and off, the time scales for the formation of inertial coher-
ent structures could be compared with that of finite-size coherent
structures.

Recently, FSCS have been reported for other thermocapillary-
driven systems. Orlishausen et al. 105) investigated the quasi-two-
dimensional FSCS in a shear-driven micro-reactor, in a suspen-

sion of nano-particles. Last but not least, Takakusagi et al. 106)

reported the accumulation of particles in pending thermocapillary
droplets, heated from the ceiling and cooled from the gas phase.

8. Future Perspectives

Two decades of research resulted in the understanding of the
particle accumulation phenomenon in liquid bridges. A solid the-
oretical background has been developed, together with the notion
on finite-size coherent structures. However, some important ques-
tions are still open.

As an obvious improvement, a more realistic particle–
boundary interaction model is desirable. The current discontin-
uous collision model should be replaced by a continuous and
smooth interaction which captures, at least, the enhanced normal-
to-boundary viscous drag in the particle boundary layer. It can be
expected that such an improved modeling will allow better esti-
mates of the time scales on which FSCS evolve than is currently
possible with the PSI model. The study of Romanò et al. 104) is a
first step forward in this direction.

Another major issue which needs further investigation is the
role of particle–particle interaction. The massive attraction of par-
ticles to their common single-particle attractor locally increases
the density of particles on and near the periodic or quasi-periodic
single-particle orbit, violating the fundamental hypothesis of in-
dependent particles. Including interaction forces among the par-
ticles would also allow to investigate polydisperse suspensions in
liquid bridges and, eventually, lead to a deeper understanding of
the experimentally observed destruction of FSCS. 51) The binary
particle–particle interaction may be modeled by taking into ac-
count at least the viscous forces exerted along the line connecting
the particle centroids when they move closer than some thresh-
old value. A good starting point for the modeling is represented
by the exact Stokes-flow solution provided by Stimson and Jef-
fery 107) for two spherical particles of arbitrary radius moving
against each other.

Finally, an important open question is related to the effect of
particle perturbations of the flow topology. This issue becomes
more urgent the higher the local particle concentration gets and
the larger the particle size is compared to the flow domain. To take
into account the particle-induced changes of the flow the current
one-way coupling needs to be replaced, at least, by a two-way-
coupling approach. It can be expected that the KAM structure of
the flow topology is destroyed, but the essential transport proper-
ties may approximately survive in some parameter ranges. In two
way coupling the use of a single snapshot of the flow field of a
hydrothermal wave, however, can no longer be used and one has
to resort to a more computationally intensive approach, similar to
the one adopted by Shevtsova’s group.
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