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Abstract

The behavior of fine particle (dust) clouds in plasmas is analyzed by theory, simulations, and experiments. The investigation
is motivated by basic interest in strongly coupled Coulomb-like systems and by on-going experiments by PK-4 on-board the
International Space Station (ISS). This apparatus succeeding PK-3 Plus has a different simple geometry and has a possibility
to elucidate another fundamental aspects of fine particle systems in plasmas. We give an overview of the results of theoretical
and simulation works and our experiments with the apparatus PK-4J which has a structure similar to PK-4.
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1. Introduction

Fine particles (dusts) of micrometer size in plasmas usu-

ally have charges of very large magnitude. Typical values

are 103 to even 105 times the electronic charge. Because

of strong interactions between charges and the possibility

to observe positions and velocities of fine particles by the

scattering of laser light, fine particle clouds have been at-

tractive as objects of research for fundamental physics1–3).

These particles, however, are still macroscopic and, in or-

der to avoid the effect of gravity, experiments on the Inter-

national Space Station (ISS) have been performed by the

apparatus PKE-Nefedov and then PK-3 Plus4).

After PK-3 Plus, the project PK-4 is now in progress5).

In the apparatus PK-4, the plasma is generated by a dis-

charge in a long cylindrical tube. This kind of plasma with

the cylindrical symmetry and the uniformity along the axis

may facilitate the observation of phenomena expected in

three-dimensional homogeneous systems. We constructed

PK-4J shown in Fig.1 whose structure is similar to PK-4.

Mainly supported by JAXA, we have been working on

such cylindrical fine particle plasmas in order to propose

possible interesting themes for PK-4 experiments as well

as to make basic research on fine particle plasmas. We

here overview the results of our theoretical, simulation,

and experimental works6–9).

We consider the stationary system of fine particles in a

plasma with the cylindrical symmetry. The plasma is as-

sumed to be generated by the discharge of the dc electric
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field along the axis. The average flow of the plasma is

assumed to be suppressed by, for example, switching the

polarity of the dc field. Typical values of parameters are

plasma density of the order of 108−109cm−3, particle den-

sity 104−105cm−3, the electron temperature 1−3eV, and

the ion and particle temperature 300 K.

We first describe the behavior of fine particle clouds in

the continuum limit on the basis of the drift-diffusion equa-

tions10). We then give a framework to treat the effect of

discreteness and describe the results of theory and simu-

lations on structures. Some experimental results obtained

on the ground and in the parabolic flights are also given.
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Fig. 1 In PK-4J, fine particles are observed in the central
straight cylinder.
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2. Basic Equations and General Prop-

erties of Solutions with Cylindrical

Symmetry

2.1 Drift-Diffusion Equations

Our system is composed of plasma (electrons and ions)

and fine particles. We denote physical quantities of each

component by suffixes e, i, or α, α being the species of fine

particles. They are in the atmosphere of neutral gas of

typically 10-100 Pa. The inert gas is often adopted as the

gas species and we assume Ar. Under typical conditions of

experiments, ions, electrons, and fine particles experience

frequent collisions with neutral gas atoms and are consid-

ered to be described by the diffusion coefficients De,i,α and

the mobilities µe,i,α which are related via the Einstein re-

lations. As usually observed, each component has different

temperatures, Te,i,α.

For densities ne,i,α and flux densities Γe,i,α, we have

equations of continuity,

∇ · Γe = ∇ · (−De∇ne − µeE) =
δne
δt

, (1)

∇ · Γi = ∇ · (−Di∇ni + µiE) =
δni
δt
, (2)

and

∇ · Γα = ∇ · (−Dα∇nα + µα
Fα
Qαe

) = 0. (3)

The right-hand sides express the generation and the loss of

plasma. The force acting on a fine particle with the charge

−Qαe, Fα, is given the electric field E and the ion drag

force Fidα ;

Fα = (−Qαe)E + Fidα . (4)

In our analysis, the average ion flow velocity ui is smaller

than the ion thermal velocity vi = (kBTi/mi)
1/2 and we

adopt the expression for the ion drag force2)

F idα ∼
1

3

(
2

π

)1/2
(Qαe)

2

4πε0

nie
2

ε0kBTi
Λ(βT , rα/λ)

ui
vi
, (5)

where Λ(βT , rα/λ) is the generalized Coulomb logarithm

−eβT /2Ei(−βT /2) + e[(βT /2)(λ/rα)]Ei[−(βT /2)(λ/rα)],

Ei(x) the exponential integral, and

βT =
|Qα|e2/4πε0kBTi

λ
(6)

(λ is the screening length in the plasma usually determined

by the ion Debye wavenumber).
We introduce the factor fα as the ratio of the magnitudes

of the ion drag force to the electric field force defined by

fα =
F idα
QαeE

. (7)

As for the generation/loss of plasma, we express the vol-

ume generation rate by cgne with the coefficient (constant)

cg. The plasma is lost by the recombination at the surface

of fine particles and the boundary of the system (wall),

the recombination in the bulk of plasma being neglected.

The charge of the particle α is determined by the balance

between the electron and the ion currents. Denoting the

balanced current by cα, we have the generation/loss of the

plasma in the form

δni
δt

=
δne
δt

= cgne −
∑
α

cαnα. (8)

The charge of a particle, which is approximately propor-

tional to the radius and the electron temperature, is also

influenced by the ion mean free path2). We take the lat-

ter effect into account. In the following, we assume the

cylindrical symmetry and denote the radius by R.

3. Behavior of Solutions

We here discuss the behavior of solutions analytically.

3.1 Without Dust Particles

In this case, the above equations reduce to well-known

ones11) characterized by the distance Ra = (Da/cg)
1/2

determined by the rate cg and the ambipolar diffusion co-

efficient Da defined by

Da =
µeDi + µiDe
µe + µi

. (9)

The distribution is given by the Bessel function

ne ∼ ni ∼ n = n(R = 0)J0(R/Ra). (10)

The normalized charge density around R = 0 is given by

0 <
ni(0)− ne(0)

ne(0)
∼ Te/Ti
R2
ak

2
Di

� 1, (11)

where kDi = [ni(R = 0)e2/ε0kBTi]
1/2 is the ion Debye

wave number. The quasi-charge-neutrality holds, con-

trolled by the factor R2
ak

2
Di with a slightly positive net

charge density around the axis.
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3.2 Behavior near Axis

We now expand solutions with respect to R2. When we

have fine particles of one species α, we obtain well defined

solutions with the the normalized charge density at R = 0

given by

∆ =
ni(0)− ne(0)−Qα(0)nα(0)

ne(0)
∼ d1
A
, (12)

where

d1 ∼
Te
Ti

(
1− cp

cg

np(0)

ne(0)

)
(13)

and

A ≡ R2
a

[
e2ne(0)

ε0kBTe
+

(
1− fp

Qpnp
ni

)
e2ni(0)

ε0kBTi

+ (1− fp)
Qp(0)2e2np(0)

ε0kBTp

]
� 1. (14)

When nα = 0, A reduces to factor R2
ak

2
Di and the solution

reduces to the known result.

When

Qp(0)2e2np(0)

ε0kBTp
� e2ni(0)

ε0kBTi

(
� e2ne(0)

ε0kBTe

)
, (15)

we have A� R2
ak

2
Di and therefore much enhanced charge

neutrality. Densities are given by

ne(s)

ne(0)
= 1 + a1

R2

R2
a

+ . . . ,

ni(s)

ne(0)
=
ni(0)

ne(0)
+ b1

R2

R2
a

+ . . . ,

np(s)

ne(0)
=
np(0)

ne(0)
+ c1

R2

R2
a

+ . . . ,

where

a1
b1
∼ a1
Qp(0)c1

∼ ne(0)

Q2
p(0)np(0)

∼ ni(0)

Q2
p(0)np(0)

� 1

and

b1
Qp(0)c1

∼ 1.

We thus have (1) much enhanced charge neutrality, (2)

almost flat electron distribution, and (3) the compensa-

tion of the change in fine particle charge by the change

in ion density. Though the above analysis is for the case

of cylindrical symmetry, we expect these features hold in

the general case where we have appreciable amount of dust

particles in the sense of (15). Though some of above char-

acteristic have been observed in numerical simulations in

the case of high particle density12), the origin and the nec-

essary condition have not been discussed.

3.3 Void Formation Condition

In experiments by PK-3 Plus, often observed is the cen-

tral space called ‘void’ where we have no dust particles13)

due to the effect of the ion drag force14). Since we would

like to have as large as possible systems of fine particles

without void, the condition for the formation of voids is

an important issue.

The void is considered to appear when the balance is lost

between the inward force by the electric field and outward

force by the ion drag for fine particles. The condition for

the appearance of void may be given by

fα(0) =

[
F idα
QαeE

]
R→0

> 1 when nα(0) = 0. (16)

This is rewritten in terms of basic parameters, for example,

ne(0) > [ne(0)]c, (17)

where [ne(0)]c is expressed by rα, Te, and pn (neutral gas

pressure): The dependence of the particle charge number

Qα on these parameters needs to be taken into account.

3.4 Dust Particles of Two Species and Void-

Like Structure
In the case where there exist dust particles of two species

α and β with radii rα and rβ , rα > rβ , both satisfying the

no-void condition, we may have 1 > fα > fβ since the

charge of a dust particle is proportional to its radius. The

effect of ion drag on the species α is stronger than the

one on the species β. The species α is then located in the

outer domain and the species β is distributed in the inner

domain. As a distribution of α, there is a void at the center

filled with smaller fine particles of β.

4. Numerical Analyses of Drift-Diffusion

Equations

Starting from the origin with some assumed value of ∆,

we numerically integrate resultant equations and adjust ∆

so as to have asymptotically vanishing distributions near

the wall. Solutions are quite sensitive to the value of ∆

and numerical computations with very high accuracy are

needed. The radius of particles rα is assumed to be 0.5−
2 µm.

Without fine particles, known solutions of ambipolar dif-

fusion equation are reproduced. Though our equations are

not expected to be applicable in the sheath domain near

the wall, we obtain the solutions which can be smoothly

connected to the domain.
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Fig. 2 Distribution of electrons, ions, and dust particles
(top), charge density (bottom left and center), and
electrostatic potential (bottom right)

4.1 Fine Particles of One Species

Some examples of distribution functions, the charge den-

sity, and the potential are shown in Fig.2. The radius of

particle distribution increases with the density at the cen-

ter. We observe that, when we have appreciable amount of

fine particles, the characteristics (1), (2), and (3) appear

in the results of numerical integration.

In addition, the net charge density overshoots to posi-

tive values at the radius where the density of dust particles

vanishes and the electron distribution begins to decrease.

Though the negative charge of dust particles is compen-

sated by the increase of the ion density, the decay of dust

particle density cannot be completely followed by the ions

due to large difference in the diffusion coefficients, giving

the positive peak in the net charge density.

4.2 Formation of Void

With the increase of the electron density (at the center)

ne(0), the increase of the dust particle radius rα, or the

decrease of the neutral atom density (the gas pressure) pn,

there appears the void at the center. The critical values of

the parameters are approximately expressed by

nce(0)[cm−3] ∼ 0.040 · 108 p1.56n [Pa]

r0.42α [µm]T 0.24
e [eV]

. (18)

4.3 Dust Particles of Two Species

We have also analyzed some cases where there exist two

species of dust particles. We observe that smaller particles

are distributed inside of larger particles.

5. Framework to Describe Effects of Dis-

creteness

The effective interaction between fine particles can be

derived on the basis of the adiabatic approximation which

regards the ambient plasma as a medium. After statis-

tically averaging with respect to electrons and ions, the

effective interaction between fine particles is given by the

Helmholtz free energy for given configuration of fine par-

ticles9).

We take advantage of the fact that, in our system, the

size of the system L, the mean distance between particles

ap, and the mean distances between electrons or ions ae,i

and satisfy the inequality L � ap � ae,i. We define the

local average of a quantity A(r) at r, A(r), by

A(r) ≡ 1

`3

∫
`3 centered at r

A(r)dr, (19)

where ` satisfies L � ` � ap � ae,i. The fluctuation

δA(r) is defined by

δA(r) ≡ A(r)−A(r). (20)

The quantities in the continuum limit appeared in the pre-

vious sections correspond to the averages (which need bars

in the notation of this section).

The total charge density ρ(r) is written as

ρ(r) = ρp(r) + ρbg(r) + ρext(r),

where ρp(r) is the charge density of particles,

ρp(r) = (−Qe)np(r) = (−Qe)
N∑
i=1

δ(r− ri),

ρbg(r) is the charge density of the background plasma com-

posed of electrons and ions,

ρbg(r) = (−e)ne(r) + eni(r),

and ρext(r) is the external charge density or the source

of the external field. From the Poisson’s equation for the

electrostatic potential Ψ(r), we have

−ε0∆Ψ(r) = ρ(r) = ρp(r) + ρbg(r) + ρext(r),

and

−ε0∆δΨ(r) = δρp(r) + δρbg(r),

where δρbg(r) = e[−δne(r) + δni(r)].

As for the polarization of electrons and ions, we adopt

the approximation of the linear adiabatic response to the

local potential fluctuation δΨ(r):

δne(r) ∼ ne(r)
eδΨ(r)

kBTe
, δni(r) ∼ −ni(r)

eδΨ(r)

kBTi
.
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We then have

δρbg(r) = −ε0k2D(r)δΨ(r),

and the Poisson’s equation for ∆Ψ reduces to

−ε0[∆− k2D(r)]δΨ(r) = δρp(r).

Here, kD(r) is the (local) Debye wave number defined by

k2D(r) =
e2ne(r)

ε0kBTe
+
e2ni(r)

ε0kBTi
.

For typical electron and ion temperatures, we can thus

regard that the length ` satisfies the inequality L � ` �
{1/kD, ap} � ae,i. Since the position dependence of 1/kD

is characterized by L and L � 1/kD, we can write the

approximate solution for δΨ(r) in the form

δΨ(r) ∼
∫
dr′u(r, r′)δρp(r

′),

where

u(r, r′) =
exp(−k+D|r− r′|)

4πε0|r− r′|

and k+D = kD[(r + r′)/2].

After some manipulations, the Helmholtz free energy is

finally given by

Uex = Fid,0 +
1

2

∫
dr[ρp(r) + ρbg(r) + ρext(r)]Ψ(r)

+

1

2

N∑
i 6=j

(Qe)2u(ri, rj) +

N∑
i=1

(−Qe)
∫
dr′u(ri, r

′)[−ρp(r′)]



+
1

2

∫ ∫
drdr′u(r, r′)ρp(r)ρp(r

′)−1

2

N∑
i=1

(Qe)2kD(ri)

4πε0
.

(21)

The averages ρp(r), ρbg(r), and Ψ(r) are determined so as

to be consistent with the plasma generation and loss and

the ambipolar diffusion in the system (and also with the

external potential, if any). Configuration-dependent terms

in (21),

1

2

N∑
i 6=j

(Qe)2u(ri, rj)+

N∑
i=1

(−Qe)
∫
dr′[−ρp(r′)]u(ri, r

′)

−1

2

N∑
i=1

(Qe)2kD(ri)

4πε0
, (22)

describe the interaction and potential for fine of particles

at {ri}i=1,...N . The integral in the second term,∫
dr′

[−ρp(r′)]
4πε0|ri − r′| exp(−k+D|ri − r′|), (23)

can be regarded as the Yukawa potential at ri due to

[−ρp(r′)], the (imaginary) charge density, which exactly

cancels the average particle charge density ρp(r
′), the

“shadow” of [ρp(r
′)]. It is to be noted that the potential

due to the shadow is attractive for particles. Particles are

thus mutually interacting via the Yukawa repulsion and, at

the same time, confined by the attractive potential due to

the shadow charge density [−ρp(r′)]. The last term in (22)

is the free energy stored in the sheath around each particle

(a one-body potential) giving the ‘polarization force’.

Let us assume ρext = 0. Even in this case, it is not

easy to obtain the consistent distribution of plasma and

particles.

When (Qnp)/ne becomes nonnegligible compared with

1/(kDeRa)2, we have to couple the particle charge den-

sity with the potential and therefore with electron and ion

distributions. As shown in previous sections, the electro-

static potential becomes flatter in the domain where we

have appreciable amount of particle charge: The charge

neutrality is controlled by the factor A which includes the

contribution from particles and can be much larger the case

without particles. Then the simplest approximation in this

case may be to assume that the potential is completely flat

where particles exist [Approximation 1]. In our previ-

ous analyses of structures and ordering of particles in finite

systems,15,16) we have assumed that the average particle

distribution is uniform with finite extensions. Noting the

behavior of the potential with the existence of particles,

we may expect this treatment to be close to reality when

we have appreciable amount of particles.

On the other hand, when the contribution of particles to

the net charge density is negligible, the plasma distribution

and electrostatic potential are determined independently of

particles. The potential is approximately expressed by11)

Ψ(R) ∼ kBTe
e

ln J0(R/Ra) = −kBTe
e

(
R2

4R2
a

+ . . .

)
.

(24)

In this case [Approximation 2], particles are consid-

ered to be in this parabolic electrostatic potential as in

the model adopted in previous approaches17–19). This as-

sumption has the advantage that the radius of the system

is determined only by the number of particles.

6. Particle Simulation

On the basis of the theoretical framework given above,

we analyze structures of fine particle clouds in cylindrical

discharge like PK-4 and PK-4J.
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6.1 Flat Potential

Since it has been shown that the very existence of fine

particles leads to almost flat electrostatic potential, one of

reasonable assumptions is Approximation 1. At suffi-

ciently low temperatures, fine particles are organized into

shell structures15). Examples are shown in Fig.3. It has

been shown that these structures are expressed by simple

interpolation formulas to a good accuracy.

When the density of fine particles is negligibly small,

we have the ambipolar field (24) and Approximation

2 applies. With increased fine particle density, the dis-

tributions of plasma and fine particles have to be deter-

mined self-consistently. The average charge density be-

comes the source of the external electrostatic potential and

the ‘shadow’ also contribute to confine particles. Since

it is rather difficult to accurately estimate the electro-

static potential or the contribution from the ‘shadow’ self-

consistently, we may evaluate two extreme cases, Approx-

imation 1 and Approximation 2.

However, we have some results (though not quantified

enough) which indicate that the structure relative to the

system radius is not so sensitive to the exact form of the

potential. In addition, we do not have simple method to

determine the extension of the system self-consistently. We

therefore adopt Approximation 2 in our simulations on

the effects of gravity and the anisotropy of interaction.

6.2 Distribution in Ambipolar Potential and

Effect of Gravity

In Fig.4, we show some structures of dust particles in

the ambipolar potential. Note that the almost equal spac-

ing between shells is also realized in this potential. With

the increase of the gravity perpendicular to the symmetry

axis, the structure moves downward as a whole and the

shells become compressed in the direction of the gravity as

naturally expected.

When we have mixtures of dust particles of different

radii, they are separated by gravitation, even if the differ-

ence is rather small as also shown in Fig.4. In experiments,

the system sometimes becomes a mixture of dust particles

which are introduced and those non-intentionally exist.

6.3 Effect of Anisotropic Interaction

In our system, we have the flow of plasma along the axis

with alternating direction. It is known that, due to such a

flow of ions, the interaction between dust particles has an

anisotropic part approximately expressed by3)

−cM2
t

(Qαe)
2

r3ij
exp(−rij/λ)(3 cos2 θij − 1), (25)

where θij is the angle between rij and the axis. The typical

value of the ion thermal Mach number Mt is estimated to

be around 0.5 from the discharge current of the order of 1

mA.

Structures of dust particles reflect the anisotropic part

in their mutual interaction. An example is shown in Fig.5

where shells are developed into planes for observation of

configuration on shells. We observe that the triangular

lattice with defects in the case of Yukawa interaction be-

comes oriented along the axis. When looked at along the

direction of the axis, shells are decomposed into points, or

uniformly distributed points on the circle are changed into

lumps of dots on almost the same circle. The projected

shell structure seems to change from concentric shells into

a kind of lattice of lumps.

7. Experiments
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Fig. 5 Example of effect of anisotropic interaction. Cross
sectional projection without anisotropic interac-
tion (left), the one with anisotropic interaction
(center), and cylinders (shells) cut-out into planes
(right)

We performed experiments by PK-4J both on the ground

and in the parabolic flights. We adopt Ar as the gas species

and fine particles of the radius 1.3 µm are injected into the

cylindrical plasma produced by the DC discharge along the

axial direction with the polarity switched by 1 kHz. The

switching is intended to suppress the overall motion of the

plasma along the axis.

We have performed several sets of experiments. In ex-

periments of 2011 and 2012, the images of particles are not

sufficiently resolved. Examples are shown in Fig.6. In the

parabolic flight, we have circular cross sections and under

the effect of gravity which is perpendicular to the axis,

we observe overall downward displacement and deformed

shells compressed in the direction of the gravity. Though

not sufficiently resolved, the structure is qualitatively con-

sistent with the results of numerical simulations.

Experiments on the ground, deformed shell structure has

been observed20). In our experiments8), distributions of

particles with circular cross section are observed under mi-

crogravity and deformed shells are observed on the ground.

Our results seem to be not inconsistent with our theoret-

ical works. For exact comparisons, however, some further

improvement might be necessary.

In experiments of 2013 shown in Fig.7, the positions of

fine particles are obtained. In this case, the distribution in

the cross section is somewhat different from the ones ob-

tained by simulations without anisotropic interaction and

particles are observed to be aligned along the axis. Though

further investigation is necessary, this might indicate the

effect of anisotropic component in the mutual interaction.

The distribution of probably heavier component under the

gravity which are included not intentionally seems to be

not simply accounted for.

8. Concluding Remark

We have briefly summarized our researches on fine par-

ticle plasmas with cylindrical symmetry which are still in

progress. We hope them to be of some help to understand

fundamental physics of strongly coupled charged particle

systems.
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Fig. 6 Fine particles in PK-4J in parabolic flight (left)
and under the downward gravity (right).
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