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ELF を用いて作製した Fe-Cu 合金球の凝固組織の解析 
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Abstract: In Fe-Cu alloys, the existence of a metastable 
solubility gap just below the liquidus line has been suggested. 
Verification of this requires rapid quantification of a large 
number of microstructural images. This study aims to apply 
deep learning to EPMA cross-sectional images to achieve 
automatic detection and measurement of Fe dendrites 
precipitated in the Cu phase. Fe–Cu alloy spheres of multiple 
compositions were produced using ELF containerless 
solidification under low gravity conditions. The cross-sectional 
EPMA images were divided into 640-pixel squares, and 150 
images were selected that showed a wide area of the Cu phase 
and contained large dendrites. All images were annotated with oriented bounding boxes (OBBs) using 
Label Studio, and YOLOv8x was trained on 100 images (50 for training and 50 for verification), with the 
remaining 50 images used for inference. The inference results detected an average of 4.06 dendrites per 
320 μm square, with an average confidence level of 78.2%. The detection targets were generally 20–50 μm 
in size, and particles with a long axis >50 μm could also be extracted when there was little overlap. On the 
other hand, micro-particles smaller than 10 μm were not detected, which is thought to be due to confusion 
with spherical small particles. 
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1. introduction 

In the evaluation and analysis of microstructural characteristics, recent advances in computer vision (CV) 
and machine learning (ML) have brought about new methods for extracting information from microstructural 
images 1). Fe-Cu alloys are eutectic alloys with a nearly horizontal liquidus line over a wide composition range 
in the alloy phase diagram. Fe-Cu alloys exhibit two-phase separation upon undercooling, suggesting the 
presence of a metastable solubility gap just below the liquidus line 2). To observe and analyze this phenomenon 
in experimental samples, it is necessary to analyze a large number of microstructure images. As a CV method 
capable of performing this analysis rapidly, the creation of weights using deep learning and subsequent 
inference using those weights is useful. In this study, cross-sectional EPMA images of Fe-Cu alloy spheres 
with multiple composition ratios solidified in a low-gravity environment using ELF were incorporated into 
deep learning to create weights capable of recognizing dendrites. The aim was to detect, measure, and 
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illustrate Fe-precipitated dendrites from random EPMA images and to process microstructural observations 
at high speed. 

2. Experimental method 

Fe-Cu alloy ball samples prepared by the ELF were polished, and images observed and photographed by 
EPMA of multiple cross sections were divided into 640-pixel squares. The scale of these images was 0.5 (μm) 
per pixel. 

Among the cross-sectional images created, 150 images were selected that contained a large area where the 
Cu main phase occupied most of the screen and Fe dendrites were formed within the Cu main phase. These 
images were annotated using the open-source data labeling tool Label Studio, and a dataset in oriented 
bounding box (OBB) format was constructed. 

 

 
 

Figure 1. Annotation in Label Studio 
 
Although the shapes of the dendrites observed in the cross-sections varied, in order to maintain the 

quality of the annotations, we excluded those that were independent of their surroundings and those that were 
so small that their arms were crushed. 

We divided 100 of these images into 50 for training and 50 for verification, and used Ultralytics' deep 
learning platform “Ultralytics” to train the YOLOv8x model and obtain new trained weights for dendrite 
detection. For the remaining 50 images, we performed inference to determine the positions of dendrites using 
these weights. Training and inference were performed on a workstation (Lenovo ThinkStation P520c, CPU: 
Intel Xeon W-2123 @ 3.60GHz ×8, memory: 32GB) running Ubuntu 22.04.5 LTS. 

3. Experimental Results and Discussion 

The following is an example of an image in which dendrites were detected. 
 

 
 

Figure 2. Detection image of a 320 [μm] square section 
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As shown in the image, typical large dendrites were detected. Fifty images were processed, and the 
average number of detections per image was 4.06, with an average confidence level of 66.9%. 

The detected particles were approximately 20 (μm) to 50 (μm) in size. The shape was predominantly 
short-armed with many small particles, similar to the shape shown in the upper left of Figure 1. Even large 
particles with a long axis length exceeding 50 (μm) were detected if there were no overlapping particles in the 
surrounding box, but conversely, fine dendritic particles smaller than 10 (μm) were not detected. This is 
thought to be because they could not be distinguished from normal spherical small particles, which are 
excluded during deep learning, and were therefore excluded from detection.). 
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