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1. Introduction 

1.1. Background 

Computational fluid dynamics is a field that uses computers to solve and analyze approximately the 

Equation of continuity and Navier-Stokes equations. This field has developed with the improvement of 

computer performance and has advantages, such as easier parameter settings and the ability to simulate 

environments where experiments are difficult to perform. In addition, various methods have been developed 

to date, and these methods have the advantage capable to analyze and consider multiple approaches 

depending on the system being simulated. On the other hand, it is rare for simulation results to completely 

match experimental results, and it is important to know how to evaluate differences. 

Currently, the analysis of fluid phenomena is used in many places, and it is an important issue that is 

related to the fuel efficiency of automobiles and airplanes, as well as the power generation performance of 

hydroelectric and wind power plants. Among them, gas-liquid two-phase flow is a fluid motion in which gas 

and liquid coexists, and it has a great impact on the core parts of systems such as inside engines and nuclear 

power plants. In particular, droplet collision problems affect the formation of raindrops and spray coatings, 

and the head-on collision between droplets, which is the subject of this study, plays an important role in the 

spray phenomenon and drug protection. There are various collision forms depending on the Weber number 

(𝑊𝑒), the collision parameter (𝐼), and the species of liquid 1). 

𝑊𝑒 =
𝜌ℎ𝐷𝑈0

2

𝜎
 (1) 

𝐼 =
𝑏

𝐷
 (2) 

Brazier-Smith 2) conducted experiments on droplet collisions. Subsequently, Ashgriz and Poo 1) conducted 

droplet collision experiments with the same and different sizes and concluded that collision dynamics can be 

classified by the Weber number, collision parameters, and droplet size ratio. Here, the Weber number 

represents the ratio of inertial force to surface tension, and the collision parameters represent the eccentricity 

of the droplet in the collision direction. Various models have been proposed for numerical analysis, including 

the study of Nikolopoulos and Bergeles 3) using the VOF method and the study of Pan and Suga 4) using the 

level set method. 
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Figure 1. Model of droplet collision. 

Figure 2. We-I diagram collision outcome regimes, 1. SPC (soft permanent-coalescence): coalescence after 

minor deformation, 2. B: Bouncing of the droplets, 3. HPC (hard permanent-coalescence): coalescence after 

substantial deformation, 4. CFRS (coalescence followed by reflexive separation): coalescence followed by 

separation for near head-on collisions, 5. CFSS (coalescence followed by stretching separation): coalescence 

followed by separation for off-center collisions. 

As can be seen from the above, simulations have been performed using a variety of methods, but there 

are still some issues such as instability of the droplet interface, mass conservation, and instability due to large 

density ratios. In addition, many methods currently used are not suitable for parallel calculation, and there 

are high hurdles to high-speed calculations. Furthermore, when trying to solve these problems, models often 

become complicated, and calculation costs are high. Thus, methods to solve these problems are required. 

1.2. Purpose 

Based on the above background, the purpose of this study is to perform numerical analysis using the 

proposed method on collision phenomena related to head-on collisions of droplets, and to verify its validity. 

The proposed method is a combination of the phase-field lattice Boltzmann method, which is suitable for 

parallel computing, and the ghost node method, which has a low implementation cost. 

2.  Numerical Method 

2.1. Calculation model 

 The calculation model used in this study is shown in Fig. 3. The characteristic length is the droplet 

diameter, the characteristic velocity is the initial velocity, and the effect of gravity is ignored. The calculation 

area is 2 × 2 × 4, where the droplet diameter is 1. In addition, because this study calculates a head-on collision, 

the impact parameter (𝐼) is set to 0. 
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Figure 3. Calculation model. 

2.2. Phase-field lattice Boltzmann method 

2.2.1. Macroscopic equation 

The interface capturing method employs the phase-field method. The phase-field method assumes a 

certain width at the interface and solves the conservative Allen-Chan equation 5) for the order parameter 𝜙. 

Using this method, it is possible to calculate complex interface shapes and surface tensions. The order 

parameter 𝜙 is expressed as follows: 

𝜙 =
1

2
(1 + tanh

2𝑠

𝑊
) (3) 

Where 𝑊 is the interface width, 𝑠 is the signed distance from the interface. 𝜙 = 0 is the gas phase side, 

𝜙 = 1 is the liquid-phase side. The model is shown below. 

 

Figure 4. Transition of order parameter (ϕ). 

We solve the Conservative Allen-Chan equation. 

𝜕𝜙

𝜕𝑡
+

𝜕𝜙𝑢𝛼

𝜕𝑥𝛼

=
𝜕

𝜕𝑥𝛼

𝑀 [
𝜕𝜙

𝜕𝑥𝛼

− 𝑛𝛼 [
1 − 4(𝜙 − 𝜙𝑎𝑣𝑒)2

𝑊
]] (4) 

Where 𝑀 is the mobility, 𝜙𝑎𝑣𝑒 is the arithmetic mean of the gas and liquid phases, which is set to 0.5 in 

this study, and 𝑛𝛼 is the unit normal vector of the interface, which is expressed by the following formula. 

𝑛𝛼 =
𝜕𝜙

𝜕𝑥𝛼

|
𝜕𝜙

𝜕𝑥𝛽

|⁄  (5) 

 

Equation of continuity and Navier-Stokes equation are as follows: 

𝜕𝑢𝛼

𝜕𝑥𝛼

= 0 (6) 
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𝜌 (
𝜕𝑢𝛼

𝜕𝑡
+ 𝑢𝛽

𝜕𝑢𝛼

𝜕𝑥𝛽

) = −
𝜕𝑝

𝜕𝑥𝛼

+
𝜕

𝜕𝑥𝛽

[𝜇 (
𝜕𝑢𝛼

𝜕𝑥𝛽

+
𝜕𝑢𝛽

𝜕𝑥𝛼

)] + 𝐹𝛼
𝑠 + 𝐹𝛼

𝑏 (7) 

Where 𝜌 is the density, 𝜇 is the viscosity. 

𝜌 = 𝜌𝑙 + 𝜙(𝜌ℎ − 𝜌𝑙) (8) 

𝜇 = 𝜇𝑙 + 𝜙(𝜇ℎ − 𝜇𝑙) (9) 

The subscript ℎ means high and 𝑙 means low. 𝐹𝛼
𝑠 is a surface tension term and 𝐹𝛼

𝑏 is a gravity term, 

which are defined by the following formula. 

𝐹𝛼
𝑠 = 𝜂

𝜕𝜙

𝜕𝑥𝛼

 (10) 

𝐹𝛼
𝑏 = −𝜌𝑔𝛼 (11) 

𝜂 is the chemical potential and is defined as follows: 

𝜂 = 4𝛽𝜙(𝜙 − 1)(𝜙 − 𝜙𝑎𝑣𝑒) − 𝜅
𝜕2𝜙

𝜕𝑥𝛼𝜕𝑥𝛼

 (12) 

𝛽 =
12𝜎

𝑊
 (13) 

𝜅 =
3𝜎𝑊

2
 (14) 

 

To avoid numerical instability, the pressure is calculated from the pressure equation instead of the state 

equation. The pressure equation is given by the following formula 6). 

𝜕𝑝

𝜕𝑡
+ 𝜌𝑐𝑠

2
𝜕𝑢𝛼

𝜕𝑥𝛼

= 0 (15) 

2.2.2. Discretization 

The conservative Allen-Chan equation is discretized using a weighted MRT model. The distribution 

function ℎ𝑖 for the order parameter is calculated as follows. We employ the D3Q27 model. 

ℎ𝑖(𝑥𝛼 + 𝑐𝑖𝛼𝛿𝑡, 𝑡 + 𝛿𝑡) = ℎ𝑖(𝑥𝛼 , 𝑡) − 𝑴 
−𝟏𝑺𝒉𝑴  (ℎ𝑖(𝑥𝛼 , 𝑡) − ℎ𝑖

𝑒𝑞
(𝑥𝛼 , 𝑡)) (16) 

Where ℎ𝑖
𝑒𝑞 is the equilibrium distribution function, and in the phase-field method it is given as follows: 

ℎ𝑖
𝑒𝑞

= 𝜙𝑤𝑖 [1 +
𝑐𝑖𝛼𝑢𝛼

𝑐𝑠
2

+
(𝑐𝑖𝛼𝑢𝛼)2

2𝑐𝑠
4

−
𝑢𝛼

2

2𝑐𝑠
2

] + 𝑀 [
1 − 4(𝜙 − 𝜙𝑎𝑣𝑒)2

𝑊
]

𝑤𝑖𝑐𝑖𝛼

𝑐𝑠
2

𝑛𝛼 (17) 

Where 𝑐𝑖  is the particle velocity and 𝑤𝑖  is the weighting coefficient. The D3Q27 model used in this 

analysis is described as follows: 

Table 1. Particle velocity. 

𝒊 𝑐𝑖 𝑤𝑖 
0 (0,0,0) 8/27 

1~6 (±1,0,0), (0, ±1,0), (0,0, ±1) 2/27 

7~18 (±1, ±1,0), (0, ±1, ±1), (±1,0, ±1) 1/54 

19~26 (±1, ±1, ±1) 1/216 

 

𝑺𝒉 is a diagonal matrix, which is expressed as follows: 

𝑺𝒉 = diag(0, 𝑠ℎ, 𝑠ℎ , 𝑠ℎ, 1.5,1.5, … ,1.5) (18) 
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𝑠ℎ =
1

𝜏ℎ + 0.5
 (19) 

𝑀 = 𝜏ℎ𝑐𝑠
2𝛿𝑡 (20) 

𝑐𝑠 =
1

√3
 (21) 

𝛿𝑡 = 𝛿𝑥 = 1 (22) 

𝑴 is the transformation moment, which will be shown at the end of this section. 

 

Equation of continuity and Navier-Stokes equation are discretized using the velocity-based lattice 

Boltzmann method. The weighted MRT model is used to calculate the collision term. 

𝑓𝑖(𝑥𝛼 + 𝑐𝑖𝛼𝛿𝑡 , 𝑡 + 𝛿𝑡) = 𝑓𝑖(𝑥𝛼 , 𝑡) − 𝑴 
−𝟏𝑺𝒇𝑴  (𝑓𝑖(𝑥𝛼 , 𝑡) − 𝑓𝑖

𝑒𝑞̅̅ ̅̅ ̅ (𝑥𝛼 , 𝑡)) + 𝐹𝑖 (23) 

𝑓𝑖
𝑒𝑞̅̅ ̅̅ ̅ = 𝑓𝑖

𝑒𝑞
−

1

2
𝐹𝑖 (24) 

Where 𝑓𝑖
𝑒𝑞  is the equilibrium distribution function, 𝐹𝑖  is the external force term, which is given as 

follows 6): 

𝑓𝑖
𝑒𝑞

= 𝑤𝑖 [
𝑐𝑖𝛼𝑢𝛼

𝑐𝑠
2

+
(𝑐𝑖𝛼𝑢𝛼)2

2𝑐𝑠
4

−
𝑢𝛼

2

2𝑐𝑠
2

] (25) 

𝐹𝑖 = 𝛿𝑡𝑤𝑖

𝑐𝑖𝛼𝐹𝛼

𝜌𝑐𝑠
2

 (26) 

𝐹𝛼 is a macroscopic external force term and is as follows: 

𝐹𝛼 = 𝐹𝛼
𝑠 + 𝐹𝛼

𝑏 + 𝐹𝛼
𝑝

+ 𝐹𝛼
𝜇 (27) 

𝐹𝛼
𝑝 is the pressure term and 𝐹𝛼

𝜇 is the modified viscosity term, as follows: 

𝐹𝛼
𝑝

= −
𝜕𝑝

𝜕𝑥𝛼

 (28) 

𝐹𝛼
𝜇

= −
𝜇

(𝜏𝑓 + 0.5)𝜌𝑐𝑠
2𝛿𝑡

[∑ 𝑐𝑖𝛼𝑐𝑖𝛽(𝑓𝑖 − 𝑓𝑖
𝑒𝑞

)

𝑖

]
𝜕𝜌

𝜕𝑥𝛽

 (29) 

𝑺𝒇 is a diagonal matrix, expressed as follows: 

𝑺𝒇 = diag(1,1,1,1, 𝑠𝑓 , 𝑠𝑓 , 𝑠𝑓 , 𝑠𝑓 , 𝑠𝑓 , 1,1, … ,1) (30) 

𝑠𝑓 =
1

𝜏𝑓 + 0.5
 (31) 

𝜇 = 𝜏𝑓𝜌𝑐𝑠
2𝛿𝑡 (32) 

The first- and second-order differentials that appear in the formula are calculated as follows. 𝜃  is 

arbitrary physical quantity. 

𝜕𝜃

𝜕𝑥𝛼

=
1

𝑐𝑠
2𝛿𝑥

∑ 𝑐𝑖𝛼𝑤𝑖𝜃(𝑥𝑖 + 𝑐𝑖𝛼𝛿𝑡, 𝑡)

𝑖

 (33) 

𝜕2𝜃

𝜕𝑥𝛼
2

=
2

𝑐𝑠
2𝛿𝑥

2
∑ 𝑤𝑖[𝜃(𝑥𝑖 + 𝑐𝑖𝛼𝛿𝑡, 𝑡) − 𝜃(𝑥𝑖 , 𝑡)]

𝑖

 (34) 
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To perform a fully explicit calculation, the pressure equation is solved using the following finite difference 

method. 

𝑝∗(𝑥𝛼 , 𝑡 + 𝛿𝑡) = 𝑝(𝑥𝛼 , 𝑡) + 𝛿𝑡𝜌𝑐𝑠
2 ∑(𝑓𝑖 − 𝑓𝑖

𝑒𝑞
)

𝑖

 (35) 

In addition, to improve the stability near the interface, the pressure is calculated using a second-order 

spatial average. 

𝑝(𝑥𝛼 , 𝑡 + 𝛿𝑡) = ∑ 𝑤𝑖𝑝∗(𝑥𝛼 + 𝑐𝑖𝛼𝛿𝑡, 𝑡 + 𝛿𝑡)

𝑖

 (36) 

 

The transformation moment is defined by the following formula7). 

𝑴 = [𝒎𝟎, 𝒎𝟏, … , 𝒎𝒊, … , 𝒎𝟐𝟓, 𝒎𝟐𝟔]𝑇 (37) 

 

𝑚0𝑖 = 1 (38) 

𝑚1𝑖 = 𝑐𝑖𝑥 (39) 

𝑚2𝑖 = 𝑐𝑖𝑦  (40) 

𝑚3𝑖 = 𝑐𝑖𝑧 (41) 

𝑚4𝑖 = 𝑐𝑖𝑥𝑐𝑖𝑦 (42) 

𝑚5𝑖 = 𝑐𝑖𝑦𝑐𝑖𝑧 (43) 

𝑚6𝑖 = 𝑐𝑖𝑧𝑐𝑖𝑥 (44) 

𝑚7𝑖 = 3𝑐𝑖𝑥
2 − 𝑐𝑖𝛼

2  (45) 

𝑚8𝑖 = 𝑐𝑖𝑦
2 − 𝑐𝑖𝑧

2  (46) 

𝑚9𝑖 = 𝑐𝑖𝛼
2 − 1 (47) 

𝑚10𝑖 = 3𝑐𝑖𝛼
2 𝑐𝑖𝑥 − 5𝑐𝑖𝑥 (48) 

𝑚11𝑖 = 3𝑐𝑖𝛼
2 𝑐𝑖𝑦 − 5𝑐𝑖𝑦 (49) 

𝑚12𝑖 = 3𝑐𝑖𝛼
2 𝑐𝑖𝑧 − 5𝑐𝑖𝑧 (50) 

𝑚13𝑖 = (𝑐𝑖𝑦𝑐𝑖𝑦 − 𝑐𝑖𝑧𝑐𝑖𝑧)𝑐𝑖𝑥 (51) 

𝑚14𝑖 = (𝑐𝑖𝑧𝑐𝑖𝑧 − 𝑐𝑖𝑥𝑐𝑖𝑥)𝑐𝑖𝑦 (52) 

𝑚15𝑖 = (𝑐𝑖𝑥𝑐𝑖𝑥 − 𝑐𝑖𝑦𝑐𝑖𝑦)𝑐𝑖𝑧 (53) 

𝑚16𝑖 = 𝑐𝑖𝑥𝑐𝑖𝑦𝑐𝑖𝑧 (54) 

𝑚17𝑖 = 1.5𝑐𝑖𝛼
4 − 3.5(𝑐𝑖𝛼

2 − 1) − 2.5 (55) 

𝑚18𝑖 = 3𝑐𝑖𝛼
2 (3𝑐𝑖𝑥

2 − 𝑐𝑖𝛼
2 ) − 4(3𝑐𝑖𝑥

2 − 𝑐𝑖𝛼
2 ) (56) 
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𝑚19𝑖 = 3𝑐𝑖𝛼
2 (𝑐𝑖𝑦

2 − 𝑐𝑖𝑧
2 ) − 4(𝑐𝑖𝑦

2 − 𝑐𝑖𝑧
2 ) (57) 

𝑚20𝑖 = 3𝑐𝑖𝑥𝑐𝑖𝑦𝑐𝑖𝛼
2 − 7𝑐𝑖𝑥𝑐𝑖𝑦 (58) 

𝑚21𝑖 = 3𝑐𝑖𝑦𝑐𝑖𝑧𝑐𝑖𝛼
2 − 7𝑐𝑖𝑦𝑐𝑖𝑧 (59) 

𝑚22𝑖 = 3𝑐𝑖𝑧𝑐𝑖𝑥𝑐𝑖𝛼
2 − 7𝑐𝑖𝑧𝑐𝑖𝑥 (60) 

𝑚23𝑖 = 4.5𝑐𝑖𝑥𝑐𝑖𝛼
4 − 5.5(3𝑐𝑖𝛼

2 𝑐𝑖𝑥 − 5𝑐𝑖𝑥) − 14.5𝑐𝑖𝑥 (61) 

𝑚24𝑖 = 4.5𝑐𝑖𝑦𝑐𝑖𝛼
4 − 5.5(3𝑐𝑖𝛼

2 𝑐𝑖𝑦 − 5𝑐𝑖𝑦) − 14.5𝑐𝑖𝑦 (62) 

𝑚25𝑖 = 4.5𝑐𝑖𝑧𝑐𝑖𝛼
4 − 5.5(3𝑐𝑖𝛼

2 𝑐𝑖𝑧 − 5𝑐𝑖𝑧) − 14.5𝑐𝑖𝑧 (63) 

𝑚26𝑖 = 4.5𝑐𝑖𝛼
6 − 12(1.5𝑐𝑖𝛼

4 − 3.5(𝑐𝑖𝛼
2 − 1) − 2.5) − 25.5(𝑐𝑖𝛼

2 − 1) − 14.5 (64) 

2.3. Ghost node method8) 

In this study, the ghost node method is used to perform a numerical calculation of droplets bouncing. A 

ghost node layer is used on the collision surface between droplets, and Dirichlet boundary conditions are 

applied to it. In previous research 8), the method was used in combination with the level set method, but the 

method is unsuitable during parallel calculation. Therefore, by combining it with the phase-field lattice 

Boltzmann method, high-speed calculations are achieved in the present study. 

 

 

Figure 5.  Illustration of ghost node method. 

2.4. Energy calculation, radial expansion and algorithm 

The energy conservation equation is shown below. 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐾𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝑆𝑇𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝐾𝐸 + 𝑆𝑇𝐸 + 𝑇𝐷𝐸 (65) 

Where 𝐾𝐸 is kinetic energy, 𝑆𝑇𝐸 is surface tension energy, and 𝑇𝐷𝐸 is dissipated energy. 

In this study, the kinetic and surface tension energy are calculated. Note the kinetic energy is calculated 

for the entire region, while the formula for surface tension energy is calculated only for the interface region. 

𝐾𝐸 = ∫
1

2
𝜌𝑉2𝑑𝑣𝑝

 

𝑝

 (66) 

𝑆𝑇𝐸 = ∫ (𝛽𝜙2(1 − 𝜙)2 +
𝜅

2
|
𝜕𝜙

𝜕𝑥
|

2

) 𝑑𝑣𝑝 (67) 

Radial Expansion represents the expansion and contraction in the radial direction of the droplet. 
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𝑅𝐸 =
𝐷

𝐷0

 (68) 

 

The algorithm is as follows: 

Step 1. Initial conditions 

Step 2. Translation process calculation 

Step 3. Boundary conditions 

Step 4. Calculation of macroscopic physical quantities 

Step 5. Application of the ghost node method 

Step 6. Pressure calculation 

Step 7. Collision process calculation 

Step 8. Outputs 

Step 9. Return to Step 2 

3.  Numerical calculation results 

3.1. Calculation conditions 

The calculation conditions are listed in Tables 2 and 3. The following values are used for the Reynolds 

number and Weber number for comparison with the experimental results of previous research. The calculation 

was performed up to 2.0ms in dimensional time. 

Table 2. Calculation condition9) 

Parameter Case1 Case2 
𝑅𝑒 111 55.27 
𝑊𝑒 9.33 2.27 

Table 3. Common parameters. 

Parameter Value 

Grid 32 

Mach number 0.01√3 

mobility 0.05 

Interface width 5 

Impact parameter 0.0 

Density ratio 760 

Viscosity ratio 118.75 

 

The Reynolds number and Weber number are defined as follows: 

𝑅𝑒 =
𝑈0𝜌𝐷

𝜇ℎ

 (69) 

𝑊𝑒 =
𝜌ℎ𝐷𝑈0

2

𝜎
 (70) 

3.2. Results 

First, the results of Case 1 are presented. Figure 7 shows the time series of droplet collisions. Comparing 

the simulation results obtained in this analysis with the experimental results9), we can confirm that the shapes 

of Cases 1 is roughly consistent. It can also be seen that there are gaps between the droplets. This is because 

the ghost node method requires ghost layer on the collision surface. 

 

Figure 6. Illustration of Radial Expansion. (above: 

initial condition, below: Calculation in progress.) 
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Figure 7. Result of Case1 (Left: Numerical result, Right: Experimental result). (𝑡 =

0.0,  0.20,  0.35,  0.49,  0.61,  0.70,  0.80,  0.99 ms.) 9) 

The volume conservation was less than 0.02% in both cases, making use of the advantages of the lattice 

Boltzmann method. You can also see that the graph of volume change is oscillating. This is because the 

pressure equation is solved explicit method. Figures 8 and 9 show the results for the maximum droplet radius. 

First, the droplet is stretched in the radial direction due to collision. Then, it can be confirmed that it repeatedly 

expands and contracts due to recoil. 

 

 
 

Figure 8. Volume change rate graph.                  Figure 9.  Radial expansion graph. 

 

Figure 10 shows the changes in the kinetic energy and surface tension energy over time. As the droplet 

collides, the kinetic energy decreases and, the surface tension energy increases. After that, the kinetic energy 

increases again, and the surface tension energy decreases. We can also see that the graph of STE change is 

oscillating. This is because the pressure equation is solved explicit method. In addition, since the calculation 

of STE is greatly influenced by the interface shape, we believe that even slight interface vibrations are reflected 

in the STE. 
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Figure 10. Energy graph. 

Next, the results of Case 2 are presented. As in Case 1, Comparing the simulation results obtained in this 

analysis with the experimental results9), we can confirm that the shapes of Cases 1 is roughly consistent. 

 

 

Figure 11.  Result of Case2 (Left: Numerical result, Right: Experimental result). (𝑡 =

0.0, 0.30, 0.60, 0.70, 0.90, 1.05, 1.15, 1.25, 1.30, 1.50 ms.) 9) 

The volume conservation was less than 0.02% in both cases, making use of the advantages of the lattice 

Boltzmann method. Figures 12 and 13 show the results for the maximum droplet radius. First, the droplet is 

stretched in the radial direction due to collision as in Case 1. Then, it can be confirmed that it repeatedly 

expands and contracts due to recoil. On the other hand, the droplet bound time is slower than in Case 1 because 

the Weber number is smaller. 
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Figure 12. Volume change rate graph.                      Figure 13. Radial expansion graph. 

 

Figures 14 and 15 show the changes in the kinetic energy and surface tension energy over time. As the 

droplet collides, the kinetic energy decreases, and the surface tension energy increases as in Case 1. On the 

other hand, since the Weber number is smaller than in Case 1, the ratio of kinetic energy to total energy is 

smaller. This trend is consistent with previous research9), and it demonstrates the validity of the proposed 

method. 

  

Figure 14.  Kinetic energy graph.                        Figure 15.  Surface tension energy graph. 

4.  Conclusion 

The purpose of this study was to use the proposed method to perform numerical calculations of the 

collision phenomenon related to droplet rebound and to verify its validity. The proposed method is a coupling 

of the phase-field lattice Boltzmann method, which is suitable for parallel calculations, and the ghost node 

method, which has low implementation costs. Calculations were performed and compared with previous 

studies9), proving the validity of the proposed method. It was also found that the advantages of the lattice 

Boltzmann method, such as good volume conservation and suitability for parallel calculations using GPUs, 

were able to be utilized. 

In future, we plan to expand the proposed method to calculations when droplets are misaligned, i.e., 

collision parameter 𝐼 is other than 0. 
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