JASMAC

OR3-5

Hetero-3D の静電浮遊実験における Ti6Al4V 中に 添加した TiC の溶解現象

Dissolution Phenomenon of TiC Added in Ti6Al4V in Electrostatic Levitation Experiments for *Hetero-3D*

馬渕勇司¹,花田知優¹,上田雄翔¹,門井洸衛¹,櫛舎祐太¹,青木祐和¹,米田香苗²,左口凌成²,山田素子², 佐藤尚²,渡辺義見²,小澤俊平³,中野禅⁴,小山千尋⁵,織田裕久⁵,石川毅彦⁵,渡邊勇基⁶,鈴木進補¹ Yuji MABUCHI¹, Chihiro HANADA¹, Yuto UEDA¹, Koei KADOI¹, Yuta KUSHIYA¹, Hirokazu AOKI¹, Kanae YONEDA², Ryosei SAGUCHI², Motoko YAMADA², Hisashi SATO², Yoshimi WATANABE², Shumpei OZAWA³, Shizuka NAKANO⁴, Chihiro KOYAMA⁵, Hirohisa ODA⁵, Takehiko ISHIKAWA⁵, Yuki WATANABE⁶, and Shinsuke SUZUKI¹

- 1 早稲田大学, Waseda University,
- 2 名古屋工業大学, Nagoya Institute of Technology,
- 3 千葉工業大学, Chiba Institute of Technology,
- 4 株式会社 Henry Monitor, Henry Monitor Inc.,
- 5 宇宙航空研究開発機構, Japan Aerospace Exploration Agency (JAXA),
- 6 株式会社エイ・イー・エス, Advanced Engineering Services (AES)

1. Introduction

To elucidate the mechanism of prior- β grain refinement of Ti6Al4V alloy due to heterogeneous nucleation site particles (TiC), the space mission *Hetero-3D* was carried out to melt and solidify the samples in the electrostatic levitation furnace in the International Space Station (ISS-ELF). However, preliminary experiments conducted in a ground based electrostatic levitation (ESL) furnace revealed that some TiC particles were dissolved during heating^{1,2)}. The objective of this study was to clarify the effect of dissolution phenomenon of TiC on the prior- β grain refinement of Ti6Al4V in the ESL experiments.

2. Experimental Procedures

Ti6Al4V powder with 5 mass% TiC particles was mixed homogeneously. The powder was sintered by the spark plasma sintering method and solidified into spherical shapes in a plasma arc melting furnace. Then, each sample was heated using three laser beams in an ESL furnace. The temperature history of the sample was obtained by a pyrometer. Based on the result in a previous study³) that the diffusion coefficient in liquid metal is a proportional to a square of its temperature, a parameter of integral value of heating T^2t was introduced, which was calculated by integrating the square of the temperature T^2 and the heating time *t*. The calculation range was from the sample first reached the melting point of Ti6Al4V (1923 K) until its temperature fell below 1923 K after the laser beams were turned off. Prior- β grain maps were obtained by reconstructing crystal orientation data of the cross-section of the samples measured by an electron back scattered diffraction detector. In addition to that, images of microstructures were observed with a scanning electron microscope (SEM).

3. Results

Integral values of heating T^2t of the refined samples were smaller than 1.5×10^8 K²s whereas those of the non-refined samples were larger than that value. The amount of residual TiC was calculated using the equation¹ from the area ratio of carbon precipitates. **Figure 1** shows that the amount of residual TiC in Ti6Al4V decreased as T^2t increased. Furthermore, more than 1 mass% of TiC remained, and prior- β grains were refined when T^2t was less than 1.5×10^8 K²s.

Figure 1. Relationship between the integral value of heating and the amount of residual TiC in Ti6Al4V. The images²⁾ on either side of the graph show the prior- β grain map on the top and the SEM image on the bottom, respectively.

4. Discussion

According to Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation, the solid phase ratio increases exponentially with the solidification time, and dissolution can be considered as an opposite phenomenon of solidification. The fitting curve in **Fig. 1** shows that the amount of residual TiC decreases exponentially with increasing T^2t , therefore the symmetry of JMAK equation was established during dissolution of TiC.

5. Conclusions

Dissolution of TiC was suppressed as the integral value of heating T^2t decreased, and prior- β grains were refined when T^2t was less than 1.5×10^8 K²s. The amount of residual TiC in Ti6Al4V increased exponentially with increasing T^2t along with the symmetry of JMAK equation.

References

- 1) Y. Mabuchi, C. Hanada, H. Aoki, S. Suzuki, K. Yoneda, M. Yamada, H. Sato, Y. Watanabe, C. Koyama, H. Oda, T. Ishikawa, Y. Watanabe, T. Shimaoka, and S. Suzuki: Abstract of JASMAC-33 (2021) P22.
- Y. Mabuchi, H. Aoki, C. Hanada, Y. Ueda, K. Kadoi, K. Yoneda, M. Yamada, H. Sato, Y. Watanabe, Y. Harada, S. Ozawa, S. Nakano, C. Koyama, H. Oda, T. Ishikawa, Y. Watanabe, T. Shimaoka, and S. Suzuki: Abstract of JASMAC-34 (2022) P13.
- G. Frohberg: Mass transport by diffusion, Fluid Sciences and Materials Sciences in Space, 1st ed., H. U. Walter, Springer-Verlag (1987).

© 2023 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/li censes/by/4.0/).