# JASMAC

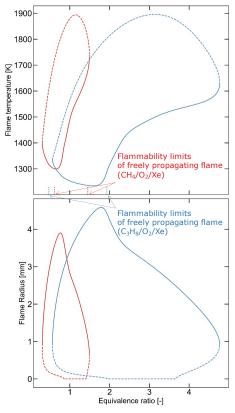


#### **P27**

## 燃料過濃条件における Flame ball の存在可能性に関する 数値的検討

### Numerical study on existence of flame ball under fuelrich condition.

角田 陽 1-2,秋葉 貴輝 1-2,中村 寿 1,手塚 卓也 1,丸田 薫 1-3


Akira TSUNODA<sup>1,2</sup>, Takaki AKIBA<sup>1,2</sup>, Hisashi NAKAMURA<sup>1</sup>, Takuya TEZUKA<sup>1</sup>, Kaoru MARUTA<sup>1,3</sup>

1 東北大学 流体科学研究所, Institute of Fluid Science, Tohoku University

2 東北大学大学院 工学研究科, School of Engineering, Tohoku University

3 東北大学 数理科学連携研究センター, Research Alliance Center for Mathematical Sciences, Tohoku University

Understandings the combustion limit and near-limit flame dynamics in low-Lewis-number mixtures are of fundamental and practical importance. There is a unique type of unconventional flame observed in quiescent low-Lewis-number premixture under microgravity, called flame ball that is steady, spherical, and non-propagating nature. Flame ball was suggested by Zel'dovich <sup>1</sup>) and then the existence has been confirmed experimentally in drop tower experiments <sup>2,3</sup>) and in space experiment <sup>4</sup>). Flame ball was observed even under lower equivalence ratio condition than the flammability limit of conventional propagating flames. Conventional flame and flame ball have been separately investigated due to the



**Fig. 1** Flame temperature and flame radius of flame balls in CH<sub>4</sub>/O<sub>2</sub>/Xe mixture (red curves), in C<sub>3</sub>H<sub>8</sub>/O<sub>2</sub>/Xe mixture (blue curves), and flammability limit of freely propagating flame (dotted vertical lines).

difference of their nature with and without propagation. We have studied behaviors of low-speed counterflow flame under parabolic-flight microgravity condition to investigate these two flames in the same configuration. In such conditions, the formation of multiple ball-like flames <sup>5)</sup> was confirmed. For further investigation, space experiment in Japanese module of ISS "Kibo" is scheduled in 2022FY. Various studies on fuel-lean combustion limit were conducted. However, knowledge on fuel-rich condition is still limited. Therefore, the existence of flame ball under fuel-rich condition is still unknown. If flame ball also exists under fuel-rich condition, this helps understanding of the combustion limits and the nature of flame ball.

To investigate the existence of flame ball under both fuel-rich and fuel-lean conditions, one-dimensional steady computation <sup>6</sup>) with detailed chemistry was conducted. The converged solutions were obtained even under fuel-rich conditions as shown in figure 1. Flame ball exists under fuel-leaner (fuel-richer) condition than fuel-lean (fuel-rich) limit of freely propagating flame except under fuel-lean condition of  $C_3H_8/O_2/Xe$  mixture. We introduce the extinction mechanism of flame ball and the unique behavior of deficient reactant switching <sup>7,8</sup>) in flame ball in this presentation.

#### References

- 1) V.B. Librovich, Ya.B. Zeldovich, G.I. Barenblatt and G.M. Makhviladze: *Mathematical Theory of Combustion and Explosions*, Consultants Bureau, 1985.
- 2) P.D. Ronney: Combust. Flame, 82 (1990) 1.
- M. Abid, M.S. Wu, J.B. Liu, P.D. Ronney, M. Ueki, K. Maruta, H. Kobayashi, T. Niioka and D.M. Vanzandt: Combust. Flame, 116 (1999) 348.
- 4) P.D. Ronney, M.S. Wu, H.G. Pearlman and K.J. Weiland: 36th AIAA Aerosp. Sci. Meet. Exhib., 36 (1998) 1361.
- 5) T. Okuno, T. Akiba, H. Nakamura, R. Fursenko, S. Minaev, T. Tezuka, S. Hasegawa, M. Kikuchi and K. Maruta: Combust. Flame, **194** (2018) 343.
- K. Takase, X. Li, H. Nakamura, T. Tezuka, S. Hasegawa, M. Katsuta, M. Kikuchi and K. Maruta: Combust. Flame, 160 (2013) 1235.
- 7) G. Joulin: SIAM J. Appl. Math., 47 (1987) 998.
- 8) M.S. Wu, P.D. Ronney, R.O. Colantonio and D.M. Vanzandt: Combust. Flame, 116 (1999) 387.



© 2021 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/li censes/by/4.0/).