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1. Introduction 

Marangoni flow has been widely concerned for its rich dynamical features and its wide existence in nature and industrial 

processes, such as oceanography 1), droplet 2), painting 3) and crystal growth 4). To the best of our knowledge, most studies 

considering Marangoni convection adopted an assumption of unrealistic adiabatic free surface. the consideration of 

interfacial heat transfer on the free surface is necessary for accurate predictions and has a significant effect on the quality 

of final products, especially in welding and crystal growth. Therefore, in this work, we performed a series of three-

dimensional numerical simulations considering the effect of radiative heat transfer on thermal-solutal Marangoni 

convection in a shallow rectangular cavity with mutually perpendicular thermal and concentration gradients, with the aim 

of shedding further light on the related flow characteristics and flow pattern transitions in the cavity.  

 

2. Numerical method   

The fluid motion in a three-dimensional rectangular cavity with a free surface at the top boundary as shown in Fig. 1 

is considered in the Cartesian coordinate system. A high and low temperature values, Th and Tl, are set at the left and right 

boundaries, and the concentration values of Ch and Cl are prescribed at the back and front boundaries. Marangoni 

convection along the free surface is driven by the surface tension gradient due to a temperature gradient in x and 

concentration gradient in y. Meanwhile, radiation is considered on the free surface, and Ta is the ambient temperature. 

For simplification, we assume that (i) the free surface does not deform; (ii) the fluid is incompressible and Newtonian, 

and its physical properties do not depend on temperature and concentration except for surface tension; (iii) the no-slip 

boundary condition is applied except for the top free surface. 

By using L, L2/ν, ν/L as the characteristic length, time, velocity, respectively, the dimensionless governing equations are 

the conservation of mass, momentum, energy, and mass transfer: 
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where ν is the kinematic viscosity, the nondimesional temperature and concentrations are defined as Θ = (T- Tl)/(Th - Tl) 

and Φ = (C- Cl)/(Ch - Cl), τ and P are the dimensionless time and pressure. Pr = ν/α is the Prandtl number, and Sc = ν/D is 

the Schmidt number, where α and D are the thermal diffusivity and the diffusion coefficient of the fluid (Pr = 0.01, Sc = 1), 

respectively. 

No-slip boundary condition is applied except for top surface, and the boundary condition along free surface are follows: 
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where Qr is the heat flux on the whole free surface, Θa = (Ta- Tl)/(Th - Tl) is the dimensionless ambient temperature. Rad = 

εσSB(T2+Ta2)(T-Ta)/k is the radiation number, where ε, σSB and k are respectively the emissivity, Stefan-Boltzmann constant 

and thermal conductivity. 

The thermal and solutal Marangoni numbers are defined as 
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where σT =  ∂σ/∂T (<0) and σC =  ∂σ/∂C (>0) are the surface tension coefficients of the temperature and concentration fields, 

respectively. The directions of Marangoni flows are shown in Fig. 1. In addition, the overall contributions of thermal and 

solutal Marangoni flows are in the same order for all the cases considered, the Marangoni ratio Maσ = MaC/MaT =1. 

 

Fig. 1 Numerical computational domain and the boundary conditions. The arrows indicate the directions of each 

Marangoni convections. 

 

The finite volume method with nonuniform grid is applied to discretize the governing equations and boundary 

conditions, which are solved by the pressure-implicit split-operator (PISO) algorithm in OpenFOAM. Details of the 

implementation of the numerical procedure can be found in the work of Minakuchi et al. 5). In addition, the numerical 

method is validated in our previous work 6) and the mesh dependency is evaluated. 
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3. Results and discussion 

3.1 Basic flow and stability 

When MaT is relatively small, the Marangoni convection is the steady flow, which is called as the basic flow. Figure 2 

shows the distributions of temperature gradient gradΘx and velocity Vx along the AB line (y = 0.5) at various free surface 

conditions. It is obvious that radiative heat transfer has a significant influence on the temperature and velocity fields. With 

the increase of ambient temperature, the overall radiative heat transfer on the free surface exhibits transition from heat 

loss to heat gain. Thus, as depicted in Fig. 2(a), the maximum temperature gradient first decreases then increases, and the 

position of that changes from left to right sidewalls. It is noted that, at Θa = 0.5 (green line), although the temperature 

gradient close to sidewalls is larger than that of the adiabatic case (orange line), it is contrary at the central region, while 

the temperature gradient is always approximately -1 under the adiabatic condition. Therefore, the similar distributions of 

streamline, temperature, and concentration overall are observed at the adiabatic case. In addition, as shown in Fig. 2(b), 

the distribution of lateral velocity also changes accordingly, which greatly affects the flow structure. 

 

Fig. 2 Distributions of temperature gradient gradΦx (a) and velocity Vx (b) along AB line (y=0.5) on the free surface at MaT 

= 1.5 ×104.  

 

3.2 Oscillatory flow 

When the thermal Marangoni number exceeds a critical value, the thermal-solutal Marangoni flow bifurcates to an 

oscillatory flow. Figure 3 shows the time dependencies of the longitudinal velocity Vy, temperature Θ and concentration 

Φ at different sampling points at MaT = 4 ×104  at different free surface conditions. The sampling points (M, N, P) are 

respectively located at (x, y, z) = (0.1, 0.5, 0.1), (x, y, z) = (0.8, 0.8, 0.1) and (x, y, z) = (0.5, 0.5, 0.1) on the free surface. It can be 

found from Fig. 3 that there is a fixed phase difference between temperature, concentration and velocity oscillations. The 

phase lag phenomena is the basic characteristic of flow instabilities and results in the occurrence of hydrothermal wave 

(HTW) and hydrosolutal wave (HSW) on the free surface. Similar observations have been reported not only in pure 

Marangoni flow 7) but also in thermal-solutal Marangoni flow 8) with an assumption of adiabatic free surface.  

The coupling effect of the thermal-solutal Marangoni flow and the radiative heat transfer has a significant influence on 

the phase lag. At Θa = -0.5, the thermal Marangoni effect is dominant near point M due to the high temperature gradient, 

while the solutal Marangoni effect is dominant near point N. This relative contribution of thermal and solutal Marangoni 

flows would result in the change of phase lag difference among those oscillations, as shown in Fig. 3 (a)- 3(c). In addition, 

(b)  (a)  
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the sequence of phase lag among the temperature, concentration oscillations depends on radiative heat transfer, as 

demonstrated in Fig. 3 (b) and 3 (d), while the velocity oscillation always lags the others. 

 

Fig. 3 Time variation of the longitudinal velocity Vy, temperature Θ and concentration Φ at different sampling points at 

MaT = 4 ×104 for different free surface conditions. 

 

4. Conclusion  

A series of three-dimensional simulations under the effect of radiative heat transfer gradients have been investigated on 

the thermal-solutal Marangoni convection in a rectangular cavity that is subjected to mutually perpendicular temperature 

and concentration, and the following conclusions are obtained: 

(1) With the increase of ambient temperature, the maximum temperature gradient first decreases then increases, and the 

positions of that transit from left to right sidewalls, which in turn greatly affects the concentration and velocity fields in 

the whole system. 

(2) Once the flow destabilizes, the fluctuations of temperature and concentration would appear in the forms of 

hydrothermal wave and hydrosolutal wave on the free surface. In addition, the coupling effect of the thermal-solutal 

Marangoni flow and the radiative heat transfer has a significant influence on the phase lag phenomena.  
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