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1. Introduction 

Gas-liquid two-phase flows including phase changes are used in various industrial devices such as combustion 
engines, boilers, heat exchangers, and nuclear reactors. Therefore, accurate prediction of gas-liquid two-phase flows is 
necessary to improve the performance of such devices. However, due to the high complexity and small time and space 
scales of this phenomenon, complete prediction of this phenomenon by experiments is often difficult. Therefore, prediction 
and understanding of this phenomenon by numerical simulation is important. 

Different numerical simulation methods have been presented to predict gas-liquid two-phase flows including phase 
changes. The most common methods are the Volume of Fluid (VOF) method1), the Level-Set method2,3), and the Front-
Tracking method4). In recent years, the Lattice Boltzmann Method (LBM)5,6) has been attracting attention as an alternative 
to these methods. The LBM is the numerical method to simulate a macroscopic flow field by representing a fluid by a set 
of virtual particles and calculating the streaming and collision of these virtual particles using distribution functions. The 
LBM has the following features7): high parallel computing performance due to its fully explicit method and local memory 
access, high conservation properties due to its fully advective, and ability to treat complex phenomena and boundaries. 
Due to these features, the LBM is expected to be applied to gas-liquid two-phase flows. However, when the LBM is used 
to simulate the gas-liquid two-phase flows, the calculation at high density ratio tends to be unstable. Therefore, different 
improvements have been presented to simulate the high density ratio two-phase flows8-14). Currently, simulations with a 
density ratio around 1000 are possible by the LBM. Similarly, when considering phase changes in gas-liquid two-phase 
flows by the LBM, numerical stability at high density ratio is a problem.  

When simulating gas-liquid two-phase flows including phase changes by the LBM, the pseudopotential LBM which 
expresses the gas-liquid interface by introducing a pseudopotential between particles is often used15). On the other hand, 
the Phase Field LBM has been attracting attention for phase change simulations in the viewpoint of adaptation to high 
density ratio and thermodynamic consistency16-18). In the Phase Field LBM, the gas-liquid interface is modeled as the finite 
volume region on a system of fixed grids where properties change continuously and rapidly, and the interface shape is 
determined autonomously by solving the Chan-Hilliard (C-H) equation or Allen-Cahn (A-C) equation which are based on 
free energy theory. This method is considered to be able to simulate the phase change of the high-density ratio. However, 
the validation of this method at high density ratios is limited to the one-dimensional Stefan problems and the droplet 
evaporation problems in which interface deformation is almost zero. Hence, the purpose of this study is to develop a 
simulation method for two-phase flows including phase changes with large interface deformations, based on velocity-
based Phase Field LBM14,18), which is considered to have high numerical stability at high density ratios among Phase Field 
LBMs. 

2. Numerical method 

2.1 Macroscopic equation 

In this study, one-component, incompressible in each phase, the compressibility due to the phase change at the 
interface is modeled as a source term16), gas-liquid two-phase flow is considered. The macroscopic equations are the 
conservation of mass (1), the conservation of momentum (2), the conservation of energy (3), and the Conservative-Allen-
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Cahn(C-A-C) equation (4), which determines the interface profile by minimizing the total free energy of the system. The 
C-H equation is usually used in the simulations of gas-liquid two-phase flows by the Phase Field Method. In recent years, 
however, it has been proposed to use the C-A-C equation in which the effect of the curvature is removed from A-C equation, 
and the equation is transformed into the conservative form 19-21). The C-H equation is a fourth-order partial differential 
equation, while the C-A-C equation is a second-order partial differential equation. Therefore, it is said that the C-A-C 
equation enables more accurate analysis than the C-H equation. Hence, the C-A-C equation is adopted as the governing 
equation in this study. The liquid phase temperature is fixed at saturation and energy equation is solved only in the gas 
phase16). The macroscopic equations are 

𝜕𝜕𝑢𝑢𝛼𝛼
𝜕𝜕𝑥𝑥𝛼𝛼

= �̇�𝑚′′′ �
1
𝜌𝜌𝑙𝑙
−

1
𝜌𝜌ℎ
� (1) 

𝜌𝜌 �
𝜕𝜕𝑢𝑢𝛼𝛼
𝜕𝜕𝜕𝜕

+ 𝑢𝑢𝛽𝛽
𝜕𝜕𝑢𝑢𝛼𝛼
𝜕𝜕𝑥𝑥𝛽𝛽

� = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝛼𝛼

+
𝜕𝜕𝜏𝜏𝛼𝛼𝛽𝛽
𝜕𝜕𝑥𝑥𝛽𝛽

+ 𝐹𝐹𝛼𝛼𝑠𝑠 + 𝐹𝐹𝛼𝛼𝑏𝑏 (2) 

𝜌𝜌𝑙𝑙𝑐𝑐𝑝𝑝𝑙𝑙 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢𝛼𝛼
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝛼𝛼

� =
𝜕𝜕
𝜕𝜕𝑥𝑥𝛼𝛼

�𝜆𝜆𝑙𝑙
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝛼𝛼

� (3) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕𝑢𝑢𝛼𝛼
𝜕𝜕𝑥𝑥𝛼𝛼

=
𝜕𝜕
𝜕𝜕𝑥𝑥𝛼𝛼

𝑀𝑀 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝛼𝛼

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝛼𝛼

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝛽𝛽

�� �
1 − 4(𝜕𝜕 − 0.5)2

𝑊𝑊
�� −

�̇�𝑚′′′

𝜌𝜌ℎ
 (4) 

where 𝜕𝜕 is the order parameter that indicates each phase, i.e. 𝜕𝜕 = 1 indicates liquid phase, 𝜕𝜕 = 0 indicates gas phase, 
and 0 < 𝜕𝜕 < 1 indicate interface. Besides, 𝑢𝑢𝛼𝛼  is the velocity, 𝜌𝜌 is the density, 𝜕𝜕 is the pressure, 𝜏𝜏𝛼𝛼𝛽𝛽  is the viscous 
stress, 𝜕𝜕 is the temperature, 𝑐𝑐𝑝𝑝 is the specific heat, 𝜆𝜆 is the thermal conductivity, 𝑀𝑀 is the mobility, 𝑊𝑊 is the interface 
thickness, �̇�𝑚′′′ is the amount of phase change per unit time unit volume, 𝐹𝐹𝛼𝛼𝑠𝑠 is the surface tension force, and 𝐹𝐹𝛼𝛼𝑏𝑏 is the 
body force. The suffix ℎ and 𝑙𝑙 indicates heavy and light fluids and the suffix 𝛼𝛼 and 𝛽𝛽 follows Einstein’s summation 
convention. The surface tension force 𝐹𝐹𝛼𝛼𝑠𝑠 is modeled by the following potential form and the amount of phase change 
�̇�𝑚′′′ is modeled based on the energy balance for the interface regions16): 
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where 𝐿𝐿 is the latent heat and 𝜂𝜂 is the chemical potential defined as 

𝜂𝜂 = 4𝛽𝛽𝜙𝜙𝜕𝜕(𝜕𝜕 − 1)(𝜕𝜕 − 0.5) − 𝑘𝑘𝜙𝜙
𝜕𝜕2𝜕𝜕

𝜕𝜕𝑥𝑥𝛼𝛼𝜕𝜕𝑥𝑥𝛼𝛼
 (7) 

where 𝑘𝑘𝜙𝜙 and 𝛽𝛽𝜙𝜙 are coefficients related to the interface thickness 𝑊𝑊 and surface tension coefficient 𝜎𝜎, and are given 
by 𝑘𝑘𝜙𝜙 = 3𝜎𝜎𝑊𝑊/2 and 𝛽𝛽𝜙𝜙 = 12𝜎𝜎/𝑊𝑊. In this study, the Mach number and temperature changes are assumed to be small, 
and the physical properties in each phase are treated as constants. The density and the viscosity are given by 𝜓𝜓 = 𝜓𝜓𝑙𝑙 +
𝜕𝜕(𝜓𝜓ℎ − 𝜓𝜓𝑙𝑙) using the order parameter, where 𝜓𝜓 = (𝜌𝜌, 𝜇𝜇).   
 
2.2 Lattice Boltzmann method 

In this study, two distribution functions, 𝑔𝑔𝑖𝑖 for analyzing the equations (1) and (2) and ℎ𝑖𝑖 for analyzing the equation 
(4), are introduced and numerical simulations are conducted by solving the time evolution equations for each of them. The 
time evolution equations for 𝑔𝑔𝑖𝑖  is based on velocity-based-LBM14,18), which is considered to achieve high numerical 
stability and computational efficiency. Moreover, additional forcing term and the source term are derived to recover the 
macroscopic equations (1) and (2) by the Chapman-Enskog theory and added to the time evolution equations. The time 
evolution equations for ℎ𝑖𝑖 is based on the method of Geier et al21), and added the source term to recover the macroscopic 
equation (4). The energy equation is discretized and solved by the Euler method and the second-order central difference. 
The time evolution equations for the distribution functions are given by 

𝑔𝑔𝑖𝑖(𝑥𝑥𝛼𝛼 + 𝑐𝑐𝑖𝑖𝛼𝛼Δ𝜕𝜕, 𝜕𝜕 + Δ𝜕𝜕) = 𝑔𝑔𝑖𝑖(𝑥𝑥𝛼𝛼 , 𝜕𝜕) + Ω𝑖𝑖
𝑔𝑔 + 𝐹𝐹𝑖𝑖 + 𝑄𝑄𝑖𝑖

𝑔𝑔 (8) 

ℎ𝑖𝑖(𝑥𝑥𝛼𝛼 + 𝑐𝑐𝑖𝑖𝛼𝛼Δ𝜕𝜕, 𝜕𝜕 + Δ𝜕𝜕) = ℎ𝑖𝑖(𝑥𝑥𝛼𝛼 , 𝜕𝜕) + Ω𝑖𝑖ℎ + 𝑄𝑄𝑖𝑖ℎ (9) 

where 𝑄𝑄𝑖𝑖
𝑔𝑔 and 𝑄𝑄𝑖𝑖ℎ are the source terms in the LBM, 𝐹𝐹𝑖𝑖 is the forcing term in the LBM, and Ω𝑖𝑖

𝑔𝑔 and Ω𝑖𝑖ℎ are the collision 
terms. In the LBM, the collision term is modeled by various ways. The most basic one is the Single Relaxation Time (SRT) 
model. In the SRT model, all distribution functions are assumed to reach equilibrium at the same time. Therefore, the SRT 
model is simple, but the numerical stability is low. The Multi Relaxation Time (MRT) model6,22) is modified version of the 
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SRT model. In the MRT model, distribution functions are transformed into macroscopic physical quantities, and different 
relaxation coefficients are applied to each physical quantity. Therefore, the numerical stability and accuracy is increased 
by the MRT model. Hence, in this study, the MRT model is applied to the collision term. The source terms in the LBM, the 
forcing term in the LBM, and the collision terms are given by 

Ω𝑖𝑖
𝑔𝑔 = −𝑵𝑵−𝟏𝟏𝑺𝑺𝑔𝑔𝑵𝑵(𝑔𝑔 − 𝑔𝑔𝑒𝑒𝑒𝑒) (10) 

Ω𝑖𝑖ℎ = −𝑵𝑵−𝟏𝟏𝑺𝑺ℎ𝑵𝑵(ℎ − ℎ𝑒𝑒𝑒𝑒) (11) 
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where 𝑵𝑵 is the transformation matrix to transform the distribution functions into the macroscopic physical quantities, 𝑺𝑺𝑔𝑔 
and 𝑺𝑺ℎ are the following diagonal matrices including the relaxation coefficients applied to each physical quantity, 𝑔𝑔𝑒𝑒𝑒𝑒  
and ℎ𝑒𝑒𝑒𝑒  are the following equilibrium distribution functions, and 𝐹𝐹𝛼𝛼

𝜇𝜇 , 𝐹𝐹𝛼𝛼
𝑝𝑝 , and 𝐹𝐹𝛼𝛼𝑎𝑎  are the following forcing term 

required to recover equations (1) and (2) by the Chapman-Enskog theory: 
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where 𝑤𝑤𝑖𝑖  is the weight coefficient, 𝑐𝑐𝑖𝑖𝛼𝛼  is the discrete velocity, 𝑐𝑐𝑠𝑠  is the speed of sound in the system, and 𝑖𝑖 is the 
discrete velocity number. In this study, we use the D2Q9 model and 𝑤𝑤𝑖𝑖, 𝑐𝑐𝑖𝑖𝛼𝛼 and 𝑐𝑐𝑠𝑠 are defined as 
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In the LBM, the macroscopic physical quantities are obtained by taking the moment of the distribution functions: 
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𝑢𝑢𝛼𝛼 = �𝑐𝑐𝑖𝑖𝛼𝛼𝑔𝑔𝑖𝑖
𝑖𝑖
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The gradient of the density in equations (19) and (20) is computed by 
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The way to compute the gradient of the order parameter in equations (5), (6), (18), and (26) is important for the stability of 
the high density ratio. Therefore, in this study, the gradient of the order parameter is computed by the following weighting 
of the second-order isotropic finite difference method and the third-order isotropic finite difference method22,23): 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝛼𝛼

����������
=

𝑐𝑐
𝑐𝑐𝑠𝑠2Δ𝑥𝑥

�𝑐𝑐𝑖𝑖𝛼𝛼𝑤𝑤𝑖𝑖
4𝜕𝜕(𝑥𝑥𝑖𝑖 + 𝑐𝑐𝑖𝑖𝛼𝛼Δ𝜕𝜕, 𝜕𝜕) − 𝜕𝜕(𝑥𝑥𝑖𝑖 + 2𝑐𝑐𝑖𝑖𝛼𝛼Δ𝜕𝜕, 𝜕𝜕)

2
𝑖𝑖

 (29) 

2.3 Initial condition and Boundary condition 

The initial conditions for the distribution functions are given by the equilibrium distribution functions (17) and (18) 
using the initial conditions for macroscopic physical quantities. The initial condition for the interface profile is given by 
the equilibrium solution of C-A-C equation: 

𝜕𝜕 =
1
2

+
1
2

tanh �
2𝑠𝑠
𝑊𝑊
� (30) 

where 𝑠𝑠 is the signed distance function of the interface located at 𝑠𝑠 = 0.  
The unknown distribution functions on the boundary need to be given as boundary conditions. For the no-slip 

boundary condition, the Bounce-Back condition is used to obtain the unknown distribution functions on the boundary. 
For the periodic boundary condition, the distribution functions that flow out from the opposite boundary are used to 
obtain the unknown distribution functions on the boundary. For the outlet boundary condition, the equilibrium 
distribution functions obtained from the macroscopic physical quantities on the boundary are used to obtain the 
distribution functions in all directions on the boundary.  

All physical variables used in this study are made dimensionless using characteristic length 𝐿𝐿0, characteristic particle 
speed 𝑐𝑐0, reference fluid density 𝜌𝜌0, reference temperature 𝜕𝜕0, reference specific heat 𝑐𝑐𝑝𝑝0, and characteristic time scale 
𝜕𝜕0 = 𝐿𝐿0/𝑐𝑐0. In this study, 𝐿𝐿0 is taken as the lattice width. 

3. Results and discussions 

3.1 Stefan problem 

The validity of the phase change model and employing the C-A-C equation to phase change simulations is verified 
by the Stefan problem2) for which an analytical solution exists. Fig. 1 shows the computational model. As an initial 
condition, a thin vapor phase is placed next to the heating wall at the temperature 𝜕𝜕𝑤𝑤 which is slightly higher than the 
saturation temperature, and a liquid phase at the saturation temperature 𝜕𝜕𝑠𝑠𝑎𝑎𝑠𝑠 is placed next to it. As times passes, the 
energy which is transferred from the heating wall to the vapor phase causes a phase change, and the vapor phase region 
expands. In this process, the densities of the vapor phase and the liquid phase are assumed to be equal, and each of the 
vapor phase and liquid phase can be regarded as stationary. Therefore, in this study, the validity of the phase change 
model and employing the C-A-C equation to phase change simulations is verified by assuming equal density and 
neglecting the fluid field. Table 1 shows the computational conditions. 

 

 

Fig. 1 Computational model for Stefan problem 
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where Stefan number 𝑆𝑆𝜕𝜕 is the dimensionless number defined as 

𝑆𝑆𝜕𝜕 =
𝑐𝑐𝑝𝑝ℎ(𝜕𝜕𝑤𝑤 − 𝜕𝜕𝑠𝑠𝑎𝑎𝑠𝑠)

𝐿𝐿
 (31) 

The analytical solution for the interface position 𝑥𝑥𝑖𝑖𝑖𝑖 is given by solving the heat conduction equation for the vapor phase 
under the moving boundary condition using the similarity transformation: 

𝑥𝑥𝑖𝑖𝑖𝑖 = 2𝜉𝜉𝑖𝑖𝑖𝑖�
𝜆𝜆𝑙𝑙
𝜌𝜌𝑙𝑙𝑐𝑐𝑝𝑝𝑙𝑙

𝜕𝜕 , 𝜉𝜉𝑖𝑖𝑖𝑖 erf�𝜉𝜉𝑖𝑖𝑖𝑖� 𝑒𝑒
𝜉𝜉𝑖𝑖𝑖𝑖
2

= 𝑐𝑐𝑝𝑝𝑙𝑙
𝜕𝜕𝑤𝑤 − 𝜕𝜕𝑠𝑠𝑎𝑎𝑠𝑠
𝐿𝐿√𝜋𝜋

 (32) 

Fig. 2 shows comparison between the analytical solution and the simulation results by the present method for the evolution 
of liquid-vapor interface location. The simulation results agree well with the analytical solution. Therefore, the phase 
change model and employing the C-A-C equation to phase change simulations is valid. 

 

3.2 Droplet evaporation 

The validity of the method to simulate the flow field by the LBM is verified by the droplet evaporation problem24) for 
which an analytical solution exists. Fig. 3 shows the computational model. As an initial condition, a droplet at the 
saturation temperature 𝜕𝜕𝑠𝑠𝑎𝑎𝑠𝑠 is placed at the center of the computational domain and surrounded by a vapor phase at the 
temperature 𝜕𝜕𝑤𝑤 which is slightly higher than the saturation temperature. A droplet size change due to the phase change 
at the interface is simulated. To ensure symmetry, the computational domain is divided into four parts, and one of these 
regions is simulated using the symmetric boundary condition. In addition, at the outlet boundary, the temperature is given 
as 𝜕𝜕𝑤𝑤, the pressure is given as zero, and the normal gradients of velocities and order parameter are given as zero. Table 2 
shows the computational conditions. 

Table 1 Computational conditions for Stefan problem 

Parameter Symbol Value 

Specific heat ratio 𝑐𝑐𝑝𝑝ℎ/𝑐𝑐𝑝𝑝𝑙𝑙  1.0 

Thermal conductivity ratio 𝜆𝜆ℎ/𝜆𝜆𝑙𝑙 2.0 

Stefan number 𝑆𝑆𝜕𝜕 1.0/0.5/0.1 

Grids 𝐿𝐿𝑥𝑥 × 𝐿𝐿𝑦𝑦 128 × 16 

 

 

Fig. 2 Evolution of the liquid-vapor interface location for Stefan problem. The lines indicate analytical 
solutions by Eq. (32) and the dots indicate present numerical results for each Stefan number. 

0

20

40

60

80

100

120

140

0 200000 400000 600000 800000

[l
at

ti
ce

]

T ime [step]

ー Anal yt ical

〇 Present



 

  

 6 of 10 

 

 
where Laplace number 𝐿𝐿𝐿𝐿 and Prandtl number 𝑃𝑃𝑃𝑃 are the dimensionless numbers defined as 

𝐿𝐿𝐿𝐿 =
𝜎𝜎𝜌𝜌ℎ𝐷𝐷
𝜇𝜇ℎ2

 (33) 

𝑃𝑃𝑃𝑃 =
𝜇𝜇ℎ𝑐𝑐𝑝𝑝ℎ
𝜆𝜆ℎ

 (34) 

The analytical solution for the droplet diameter is given by following 𝑑𝑑2-law24): 

𝑑𝑑𝑑𝑑𝑟𝑟2

𝑑𝑑𝜕𝜕
= −

8𝜆𝜆𝑙𝑙
𝜌𝜌ℎ𝑐𝑐𝑝𝑝𝑙𝑙

ln�1 + 𝑐𝑐𝑝𝑝𝑙𝑙(𝜕𝜕𝑤𝑤 − 𝜕𝜕𝑠𝑠𝑎𝑎𝑠𝑠)/𝐿𝐿�
ln(8𝐷𝐷/𝑑𝑑𝑟𝑟)

 (35) 

where 𝑑𝑑𝑟𝑟 is the droplet diameter. Fig. 4 shows comparison between the analytical solution and the simulation results by 
the present method for the evolution of droplet diameter. The simulation results agree well with the analytical solution. 
Therefore, the method to simulate the fluid field by the LBM is valid. 

 

Fig. 3 Computational model for Droplet evaporation 

Table 2 Computational conditions for Droplet evaporation 

Parameter Symbol Value 

Density ratio 𝜌𝜌ℎ/𝜌𝜌𝑙𝑙 1000 / 100 

Viscosity ratio 𝜇𝜇ℎ/𝜇𝜇𝑙𝑙 10 

Specific heat ratio 𝑐𝑐𝑝𝑝ℎ/𝑐𝑐𝑝𝑝𝑙𝑙  1.0 

Thermal conductivity ratio 𝜆𝜆ℎ/𝜆𝜆𝑙𝑙 10 

Stefan number 𝑆𝑆𝜕𝜕 0.1 

Laplace number 𝐿𝐿𝐿𝐿 10000 

Prandtl number 𝑃𝑃𝑃𝑃 1.0 

Grids 4𝐷𝐷 × 4𝐷𝐷 128 × 128 
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3.3 Film boiling 

The film boiling3) is simulated as a phenomenon in which the interface shape changes significantly. Fig. 5 shows the 
computational model. As an initial condition, a thin vapor phase is placed above the heating wall at temperature 𝜕𝜕𝑤𝑤 which 
is slightly higher than the saturation temperature, and a liquid phase at the saturation temperature 𝜕𝜕𝑠𝑠𝑎𝑎𝑠𝑠 is placed above 
it. In this situation, the liquid changes to vapor near the heating wall, and vapor region increases. Moreover, the gravity 
and density differences cause the Rayleigh-Taylor instability. These cause the release of bubbles from near the heating 
wall. This phenomenon is simulated by the present method. At the outlet boundary, the temperature is given as 𝜕𝜕𝑤𝑤, the 
pressure is given as zero, and the normal gradients of velocities and order parameter are given as zero. The body force 
𝐹𝐹𝛼𝛼𝑏𝑏 = (0, (𝜌𝜌ℎ − 𝜌𝜌)𝑔𝑔𝑦𝑦) is applied to the fluids. Table 3 shows the computational conditions. Two cases are simulated, Case1 
and Case2. Case1 is a condition that is often used as a benchmark problem. Case2 is a high density ratio condition assuming 
water-water vapor. However, the surface tension coefficient is set smaller than the real value to avoid turbulence flow. 
The initial interface shape and the container length 𝐷𝐷 are given as following to facilitate bubble detachment, and Grashof 
number 𝐺𝐺𝑃𝑃 is the dimensionless numbers defined as following: 

𝑦𝑦 = �4 + sin �
2𝜋𝜋𝑥𝑥
𝐷𝐷
��

𝐷𝐷
𝑦𝑦1

 (36) 

𝐷𝐷 = 2𝜋𝜋�
3𝜎𝜎

𝑔𝑔𝑦𝑦(𝜌𝜌ℎ − 𝜌𝜌𝑙𝑙)
 (37) 

𝐺𝐺𝑃𝑃 =
𝜌𝜌ℎ𝑔𝑔𝑦𝑦(𝜌𝜌ℎ − 𝜌𝜌𝑙𝑙)𝐷𝐷3

𝜇𝜇ℎ2
 (38) 

 

Fig. 4 Evolution of the droplet diameter during evaporation. The lines indicate analytical solutions 
by Eq. (36) and the dots indicate present numerical results for each density ratio. 
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Fig. 6 shows the visualization results of the evolution of liquid-vapor interface of Case1 by present method and Level-

Set method as reference3). The results show that the phase change occurs near the heating wall, the gas phase region 
increases, the Rayleigh-Taylor instability is enhanced, the gas phase region rises, and bubble detachment occurs. In this 
process, the interface profile is almost same as reference, but there are little gaps. When the bubble rise problem without 
phase change is simulated by Phase Field method and Level-Set method respectively and compared25,26), there are also 
little gaps. Therefore, the gaps in this study are within a valid range. Fig. 7 shows the visualization results of the evolution 
of the interface profile and temperature field of Case2. The results show that film boiling can be simulated even at high 
density ratios by the present method. 

 

Fig. 5 Computational model for Film boiling 
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Table 3 Computational conditions for Film boiling 

Parameter Symbol Case1 Case2 

Density ratio 𝜌𝜌ℎ/𝜌𝜌𝑙𝑙 40 1600 

Viscosity ratio 𝜇𝜇ℎ/𝜇𝜇𝑙𝑙 20 25 

Specific heat ratio 𝑐𝑐𝑝𝑝ℎ/𝑐𝑐𝑝𝑝𝑙𝑙  2.0 2.0 

Thermal conductivity ratio 𝜆𝜆ℎ/𝜆𝜆𝑙𝑙 40 25 

Stefan number 𝑆𝑆𝜕𝜕 0.2 0.01 

Grashof number 𝐺𝐺𝑃𝑃 18635 1.0 × 105 

Prandtl number 𝑃𝑃𝑃𝑃 1.0 2.0 

Grids 𝐷𝐷 × 2𝐷𝐷 128 × 256 128 × 256 

Amplitude coefficient 𝑦𝑦1 128 32 
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4. Conclusions 

In this study, the velocity-based Phase Field LBM is improved to simulate high density ratio two-phase flows 
including phase changes with large interface deformations. The macroscopic equations are derived based on the C-A-C 
equation and the phase change at the interface is modeled as a source term16). The LBM is improved by adding forcing 
terms and the source terms based on the Chapman-Enskog theory to simulate these macroscopic equations. Moreover, in 
order to improve the numerical stability at high density ratios, the collision term is changed and the method of calculating 
the gradient of the order parameter is improved. These methods are verified by the Stefan problem, the droplet evaporation 
problem, and the film boiling problem. These results show that the present method is valid. Moreover, it is shown that the 
present method can simulate high density ratio two-phase flows including phase changes with large interface 
deformations. 
 

 

 

Fig. 6 Evolution of the liquid-vapor interface for Case1. The blue line indicates liquid-vapor interface 
at 𝜕𝜕 = 0.5. (a) indicates reference result by Level-Set method3). (b) indicates present result. 

(a) (b)

 

Fig. 7 Evolution of the liquid-vapor interface for Case2. The white line indicates liquid-vapor interface 
at 𝜕𝜕 = 0.5 and color indicates temperature. The temperature is made dimensionless as 
𝜕𝜕 = (𝜕𝜕∗ − 𝜕𝜕𝑠𝑠𝑎𝑎𝑠𝑠)/(𝜕𝜕𝑤𝑤 − 𝜕𝜕𝑠𝑠𝑎𝑎𝑠𝑠) where 𝜕𝜕∗ is the dimensional temperature. 
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