JASMAC

OR3-6

非構造格子における THINC/SW 法と S-CLSVOF 法 による気液 2 相流の数値計算方法の改良

Improvement of Two-Phase Flow Solver based on THINC/SW and S-CLSVOF on Unstructured Meshes

白鳥 英1, 碓井 択郎2, 古山 史萌2, 小澤 俊平3, 永野 秀明1, 島野 健仁郎1 Suguru SHIRATORI¹, Takuro USUI², Shiho KOYAMA², Shumpei OZAWA³, Hideaki NAGANO^{1,} and Kenjiro SHIMANO¹

- 1 東京都市大学, Tokyo City University
- 2 東京都市大学大学院, Graduate School of Tokyo City University Tokyo City University
- 3 千葉工業大学, Chiba Institute of Technology

This study provides a practical implementation of a twophase flow solver for Newtonian fluids with an immiscible interface. The solution procedure is composed of the tangent of hyperbola for interface capturing (THINC), the simple coupled level-set and volumeof- fluid (S-CLSVOF) algorithm, and the density-scaled balanced continuum surface force (DSB-CSF) model. The newly introduced methods in the present study are 1) THINC with slope weighting (THINC/SW) extended to unstructured meshes and an 2) efficient initialization of the level-set function, which enables fewer iterations of the re-initialization. The validity and effectiveness of the present method are confirmed through three benchmark problems with comparison to other solvers. Regarding the accuracy of the interface advection, the present solver showed a sufficiently small error, which is comparable to the other established solvers. Regarding the re-initialization procedure of the level-set function, the number of iterations required by the proposed method is approximately half that required by a conventional method. For the benchmark problem on the thermocapillary flow in a rectangular cavity, it is confirmed that the present solver provides a solution sufficiently close to the asymptotic solution to this problem.

Fig. 1 Numerical results of Zalesak's slotted-cylinder benchmark problem on 12785 randomly generated unstructured meshes. Color contours indicate the VOF function after one revolution, which is interpolated on the vertices for visualization.

References

1) S. Shiratori, T. Usui, S. Koyama, S. Ozawa, H. Nagano and K. Shimano: Int. J. Microgravity Sci. Appl., 38(3) (2021) 383001.

© 2021 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/li censes/by/4.0/).