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1. Introduction

A laser interferometer enables contactless measurements of very fine temperature changes in a solution as the phase
change A¢ of observed interference fringes, which was used for the Soret coefficient measurement on ISS. Intensity time
series of the fringes I(t) are processed through phase analysis-unwrapping procedures? -3 to determine A¢. However,
analysis formulas and parameters during the existing rule-based procedures depend on the optical set-up and fringe
conditions, which disturbs the measurement versatility. Machine learning, in which training intensity-time relations
faithfully simulating the observed ones is critical, is expected to replace the rule-based procedures. We then proposed the
phase analysis-unwrapping procedure applied machine learning with artificial intensity time series generated as follows:
generating ideal time series and processing them, such as scaling, to simulate the observed one. The objective of this study
is to reveal whether the analysis accuracy of the proposed procedure can achieve the existing rule-based one. We evaluated

the accuracy of the proposed procedure with processed and non-processed artificial data.

2. Procedures of generating training data and machine learning

Figure 1 shows the schematics of evaluation processes in this study. The values of X and t indicate the vertical position
and holding time, respectively. The temperature changes in a homogeneous solution and glass given temperature
difference were numerically calculated as AT(X,t)arts and AT(X,t)artg, respectively, (b) to simulate ones (Run #1-09 in Soret-
Facet Mission) measured using the interferometer on ISS 3 (a). The phase changes A@(X, t)arts and Ap(X,t)artg were obtained
by substituting AT(X,t)arts and AT(X,t)artg into the refractive index-phase formula about temperature, respectively (c). The
phase change A¢(X, f)ar, which reproduces one observed as the sum of solution and glass ones, was obtained as AQ(X,t)art
= AP(X,t)ars + AP(X, t)arg x 12/13 + O(X) : 6(X) consists of spatially linearly increasing phase values (d). The artificial intensity
time series I(X,t)at was obtained by substituting Ap(X,t)art into the phase-intensity formula (e). The values of A¢(X,t)ar and
I(X,t)art were simultaneously processed through following processes to complement the differences (F1) to (F4) described
in Sec. 3: adding a phase to Ap(X,t)art (phase shifting) (f1), reducing I(X,t)at amplitudes to the averaged I(X,t)exp Ones
(scaling) (f2), adding random intensities to I(X,t)art (noising) (£3), and shifting the time of I(X,t)art (temporal shifting) (f4).

The gradient boosting method was applied to the processed, or non-processed, I(X,t)at and the corresponding phase

1 of 2



change A@art = AP(X,900)art - AP(X,0)art to obtain regression trees which assign A¢ according to the intensity-time relations
(g1) and (g2). The phase changes were predicted as A@pred by inputting I(X,t)exp into the regression trees (h1) and (h2). The

experimental phase changes Agexp were also obtained for comparison using the existing rule-based procedures 23 (i).
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Fig. 1 Schematics of evaluation processes in this study. The alphabets correspond to ones in Sec. 2.

3. Results

The values of Agart were larger than Agexp while AT(X,t)arts were almost the same as the experimental results measured
using thermocouples. The following features were confirmed in I(X,t)exp while they were not in the non-processed I(X, t)art:
initial value changes due to fringe distortions (F1), amplitude changes due to laser intensity distribution (F2), and noise
due to air fluctuations (F3). The peak positions of I(X,t)exp and I(X,t)art were shifted by several frames (F4). The values of
A¢prea with spatial gradient as confirmed in A¢exp were obtained using processed training data. In contrast, the values of

A¢prea with the non-processed training data were spatially almost constant.

4. Discussion

The averaged root mean square errors (RMSE) of A@pred and A¢exp were calculated against the robust regressed Acexp.
As a result, RMSE for A¢gexp and processed A¢pred were about 2 and non-processed Agpred was about 4, respectively. The
averaged determination coefficient R? for Agexp and processed Agpred were about 0.8 and non-processed A¢gpred was about
0.1, respectively. These results revealed that the proposed process improves the analysis accuracy of the machine learning
applied phase analysis-unwrapping procedure and can achieve almost the same accuracy, at least on average, as the
existing rule-based ones with relatively large outliers. The average and minimum errors of Agexp and Agpred gradients with
robust regressions, which reduce effects of outliers, were about 30% and less than 10%, respectively. The result revealed

that the machine learning applied procedure can achieve almost the same accuracy as the existing one regardless of outliers.

5. Conclusion

The following was revealed through applying machine learning to the proposed and non-processed artificial intensity
time series. A machine learning applied phase analysis-unwrapping procedure trained on numerically calculated artificial
intensity time series, in which the following processes are simultaneously processed through, can achieve almost the same

accuracy as the existing rule-based ones without them: phase shifting, scaling, noising, and temporal shifting.
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