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1. Introduction 

A laser interferometer enables contactless measurements of very fine temperature changes in a solution as the phase 

change ∆ϕ of observed interference fringes, which was used for the Soret coefficient measurement on ISS. Intensity time 

series of the fringes I(t) are processed through phase analysis-unwrapping procedures1) – 3) to determine ∆ϕ. However, 

analysis formulas and parameters during the existing rule-based procedures depend on the optical set-up and fringe 

conditions, which disturbs the measurement versatility. Machine learning, in which training intensity-time relations 

faithfully simulating the observed ones is critical, is expected to replace the rule-based procedures. We then proposed the 

phase analysis-unwrapping procedure applied machine learning with artificial intensity time series generated as follows:  

generating ideal time series and processing them, such as scaling, to simulate the observed one. The objective of this study 

is to reveal whether the analysis accuracy of the proposed procedure can achieve the existing rule-based one. We evaluated 

the accuracy of the proposed procedure with processed and non-processed artificial data. 

 

2. Procedures of generating training data and machine learning 
Figure 1 shows the schematics of evaluation processes in this study. The values of X and t indicate the vertical position 

and holding time, respectively. The temperature changes in a homogeneous solution and glass given temperature 

difference were numerically calculated as ∆T(X,t)art,s and ∆T(X,t)art,g, respectively, (b) to simulate ones (Run #1-09 in Soret-

Facet Mission) measured using the interferometer on ISS 3) (a). The phase changes ∆ϕ(X,t)art,s and ∆ϕ(X,t)art,g were obtained 

by substituting ∆T(X,t)art,s and ∆T(X,t)art,g into the refractive index-phase formula about temperature, respectively (c). The 

phase change ∆ϕ(X,t)art, which reproduces one observed as the sum of solution and glass ones, was obtained as ∆ϕ(X,t)art 

= ∆ϕ(X,t)art,s + ∆ϕ(X,t)art,g × 12/13 + θ(X) : θ(X) consists of spatially linearly increasing phase values (d). The artificial intensity 

time series I(X,t)art was obtained by substituting ∆ϕ(X,t)art into the phase-intensity formula (e). The values of ∆ϕ(X,t)art and 

I(X,t)art were simultaneously processed through following processes to complement the differences (F1) to (F4) described 

in Sec. 3: adding a phase to ∆ϕ(X,t)art (phase shifting) (f1), reducing I(X,t)art amplitudes to the averaged I(X,t)exp ones 

(scaling) (f2), adding random intensities to I(X,t)art (noising) (f3), and shifting the time of I(X,t)art (temporal shifting) (f4). 

The gradient boosting method was applied to the processed, or non-processed, I(X,t)art and the corresponding phase 
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change ∆ϕart = ∆ϕ(X,900)art - ∆ϕ(X,0)art to obtain regression trees which assign ∆ϕ according to the intensity-time relations 

(g1) and (g2). The phase changes were predicted as ∆ϕpred by inputting I(X,t)exp into the regression trees (h1) and (h2). The 

experimental phase changes ∆ϕexp were also obtained for comparison using the existing rule-based procedures 2), 3) (i). 

3. Results 
The values of ∆ϕart were larger than ∆ϕexp while ∆T(X,t)art,s were almost the same as the experimental results measured 

using thermocouples. The following features were confirmed in I(X,t)exp while they were not in the non-processed I(X,t)art: 

initial value changes due to fringe distortions (F1), amplitude changes due to laser intensity distribution (F2), and noise 

due to air fluctuations (F3). The peak positions of I(X,t)exp and I(X,t)art were shifted by several frames (F4). The values of 

∆ϕpred with spatial gradient as confirmed in ∆ϕexp were obtained using processed training data. In contrast, the values of 

∆ϕpred with the non-processed training data were spatially almost constant. 

 

4. Discussion 
The averaged root mean square errors (RMSE) of ∆ϕpred and ∆ϕexp were calculated against the robust regressed ∆ϕexp. 

As a result, RMSE for ∆ϕexp and processed ∆ϕpred were about 2 and non-processed ∆ϕpred was about 4, respectively. The 

averaged determination coefficient R2 for ∆ϕexp and processed ∆ϕpred were about 0.8 and non-processed ∆ϕpred was about 

0.1, respectively. These results revealed that the proposed process improves the analysis accuracy of the machine learning 

applied phase analysis-unwrapping procedure and can achieve almost the same accuracy, at least on average, as the 

existing rule-based ones with relatively large outliers. The average and minimum errors of ∆ϕexp and ∆ϕpred gradients with 

robust regressions, which reduce effects of outliers, were about 30% and less than 10%, respectively. The result revealed 

that the machine learning applied procedure can achieve almost the same accuracy as the existing one regardless of outliers.  

 

5. Conclusion 
The following was revealed through applying machine learning to the proposed and non-processed artificial intensity 

time series. A machine learning applied phase analysis-unwrapping procedure trained on numerically calculated artificial 

intensity time series, in which the following processes are simultaneously processed through, can achieve almost the same 

accuracy as the existing rule-based ones without them: phase shifting, scaling, noising, and temporal shifting. 
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Fig. 1 Schematics of evaluation processes in this study. The alphabets correspond to ones in Sec. 2. 
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