Numerical analysis on local acceleration of liquid film spreading on
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® The liquid film is more likely to be driven when the pillar is higher, but there is a threshold of height. In this case, the
threshold is around 40 um.

® When the pillar is short, the damping of the velocity and p,;, — pgown are significant because a small curvature radius
cannot be formed for a sufficiently long time to induce the acceleration of the liquid near the CL.

® Just after liquid contacts with the pillar, the negative 7, region appears on the substrate, that is, the vortex occurs
around the pillar.
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