Numerical analysis on local acceleration of liquid film spreading on smooth substrate induced by interaction with a single short pillar

Kogen OZAWA¹, Hayate NAKAMURA¹, Harunori N. YOSHIKAWA², Georg F. DIETZE³, Farzam ZOUESHTIAGH⁴, Lizhong MU⁵, Kizuku KUROSE^{6,7} and Ichiro UENO^{6,7}

1 Division of Mechanical Engineering Graduate School of Science and Technology, Tokyo University of Science, Japan 2 Université Côte d'Azur, CNRS, UMR 7351, Laboratoire Jean-Alexandre Dieudonné, Nice, France 3 Université Paris-Saclay, CNRS, FAST, 91405 Orsay, France 4 Université Lille, CNRS, ECLille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France

5 Key laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, China

6 Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science, Japan 7 Water Frontier Science and Technology Research Center, Research Institute for Science and Technology, Tokyo University of Science, Japan

Background

plus

Control of dynamic wetting is indispensable for environmental control under micro/low gravity conditions¹⁻⁴⁾. Liquid spreading can be characterized by the behavior of a macroscopic contact line (M-CL). In previous study, Mu et al.^{5,6)} experimentally found that the interaction between spreading liquid film and a single spherical particle or a pillar on a substrate induce rapid acceleration of the M-CL. Nakamura et al.⁷⁾ revealed that the acceleration is caused the pressure difference between the

10.0 ms

upstream and the downstream side inside the meniscus around		6666	Mirror boundary				
the particles. In this study we focus on the effect of the height of the tiny					Properties of fluids		
		Selectron 4	Computational conditions		(2cSt silicone oil & Air)		
structure on the acceleration phenomenon.	1	mm	$L_x \times L_y \times L_z [\mu m]$	$300 \times 80 \times 300$	$\theta_{\rm p} \left[\circ\right]$	20	
r Nakamura et al. (2020)			$N_x \times N_y \times N_z$	$L_x/2 \times L_y/2 \times L_z/2$	$\theta_{\rm s}$ [°]	5	
Particle Side View			$D_{\rm p} [\mu {\rm m}]$	50	σ [N/m]	1.83×10^{-2}	
			<i>h</i> [µm]	10, 20, 30, 40, 70	$\rho_1 [kg/m^3]$	873	
Meniscus <i>y</i>			<i>g</i> [m/s ²]	9.81	$ ho_{ m g} [m kg/m^3]$	1	
Substrate X			$h_{\text{inlet}} [\mu m]$	20	$v_1 [m^2/s]$	2.0×10^{-6}	
<i>t</i> [ms] = 15.0	17.0 19.0				$v_{\rm g} [{\rm m^{2/s}}]$	1.48×10^{-5}	
Spreading distance & velocity Pillar CL Substrate Liquid y x z $Flow0.02$ $0.040.040.02$ $0.040.040.02$ $0.040.040.05$ $0.040.05$ $0.040.05$ $0.040.05$ $0.040.040.05$ $0.040.05$ 0.04			$\frac{Local Reynolds number}{\sum_{\substack{k=1 \ k \in \mathbb{N}}} \frac{11.0 \text{ ms}}{v} \frac{u_x [m/s]: \text{Velocity of the liquid film}}{v [m^2/s]: \text{Kinetic viscosity}}$				

