Effect of aspect ratio on basic-flow pattern induced by thermocapillary effect in free liquid film

Takahiro HOMMA¹, Ryohei WADA¹, Koki KAWAZU¹, Takahiro TSUKAHARA^{2,3} and Ichiro UENO^{2,3}

1 Division of Mechanical Engineering, Graduate School of Science and Technology, Tokyo University of Science, Japan

2 Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science, Japan
 3 Research Institute for Science and Technology, Tokyo University of Science, Japan

-<u>Background</u>

RIST

for Science and Technology

Research Institute

Thermocapillary-driven flow is realized by a surface tension difference due to non-uniform temperature distribution over the free surface. The fluid on the surface is generally driven from a region at higher temperature to that at lower temperature. Dr. Donald Roy Pettit, a NASA astronaut, demonstrated a series of experiments in the International Space Station in 2003 ^[1]. In this experiment, he formed a thin free liquid film of water in a metallic ring and placed a heated iron close to one side of the ring. From this experiment, he found that the fluid was driven from a colder region to a hotter region even though the fluid has a negative temperature coefficient of surface tension. After such unique demonstrations, Ueno and Torii ^[2] indicated there exist two major basic flows in a free liquid film; double-layered flow (DLF) and single-layered flow (SLF). The mechanism and selection of basic flows are discussed by numerical simulation^[3-5], but little discussion has been done by experimental investigations except Fei et al.^[6]. In the present study, we focus on a multicellular flow structures in single-layered flow (SLF) by changing Γ_{zx} . In our experiments, a liquid film of 6 cSt silicone oil (Pr = 83.25) is formed in a restangular help in the aluminum plate. We discuss the formation of the

Start adding After 15 seconds temperature difference

In the present study, we focus on a multicellular flow structures in single-layered flow (SLF) by changing I_{zx} . In our experiments, a Fig. 1 Experiment on the ISS by Dr. Donald Roy liquid film of 6-cSt silicone oil (Pr = 83.25) is formed in a rectangular hole in the aluminum plate. We discuss the formation of the multicellular structures by making comparisons with numerical results.

-Symbols —	¬ ¬ Experimental apparatus	¬¬Experimental conditions —		
Nomenclatures	$\Box c p c r c r c c r c c p p c r c r c c r c p p c r c r$	Non dimonsional numbers	Properties	 Tracer particle
$D_{\rm p}$ diameter of tracer particle [m]	L_{χ}		• Test fluid [7]	Gold-coated acrylic particle
L_{x} end-wall distance [mm]	V Side wall	Aspect ratio Stokes number		Diameter [um] 15
L_z span-wise length [mm]	A ON THE REAL	$\prod_{n=1}^{\infty} = L_n / L_n \qquad o D^{-2} u$	6-cSt silicon oil (at 25 °C)	
T temp. [°C]		$\int \int \frac{1}{2x} \frac{1}{2y} \frac{1}{2x} = \frac{p_p p_p a}{1}$	Prandtl number [-] 83.25	True specific gravity [-] 1.80
T_c temp. at cold side [°C]	1	$\prod_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{d}{d} = \frac{18\mu d}{18\mu d}$	Density [kg/m ³] 916	
I_h temp. at not side [°C] \mathcal{U} velocity of x component [°C]	x	$I_{XY} = I_{X}/\alpha$	Kinetic viscosity $[m^2/s]$ 6.0 × 10 ⁻⁶	• Test plate
x position in streamwise direction [_]	CCD camera	$ \begin{bmatrix} \Gamma & -I & /d \end{bmatrix} = 0 (10^{-5} \sim 10^{-4}) $	Thermal diffusivity $[m^2/s]$ 7.31 × 10 ⁻⁸	
y position in depth direction [-]	Mirror V	$\prod_{Zy} L_Z / \alpha$	Thermal expansion	Material of the plate Aluminum
<i>z</i> position in spanwise direction [-]	Fig 2 Schematic of experimenta	Marangoni number	coefficient $[1/K]$ 1.09×10^{-3}	
V liquid volume [m ³] V_{2} volume of hole region [-3]			Surface tension $[N/m]$ 1.98 \times 10 ⁻²	Inermal conductivity 236
	apparatus. lemperature is taken by	$\sigma_T (\Delta T / L_r) d^2$	Temp. coeff. of	
Geeks	IR camera and the convection is	s $Ma_L = \frac{1}{Ma_L} = \frac{1}{Ma_L}$	surface tension [W/(m K)] -5.79 × 10-3	Thermal diffusivity 97.4×10^{-6}
ΔT temp. difference [°C]	I taken by CCD camera	ρνκ		[m ² /s]
κ thermal diffusivity of fluid [m ² /s]				۰۲
μ viscosity of fluid [Pa s]	- Regults (Experiment) -			
ρ density of fluid [m^2/s]	<u>Resuits (Experiment)</u>			
$\rho_{\rm p}$ density of particle [kg/m ³]		Cell number in SLF of the free liqu	L_{Z} (span-wise le	ngth)
σ_T temp. coefficient of surface tension [N/(m K)]		α Ma cell # (a) 10	(b) 10	
	flow field and temp. distribution over free	surface $(\Delta T [K])$ (pair) $(U) = L_x [mm] d$	/[mm]	<i>L_x</i> [mm] <i>d</i> [mm]
SIE (one of basic flow)	(z) z	1 mm 25 1(0) 8 ∇ 1.0	0.3 $\nabla\nabla\nabla\nabla$ 8 ∇	1.0 0.3 🗸 🗸 🗸
	$ (a) _x$	(4.3) $I(2)$ Ξ		1.0 0.2
		e		
		$\frac{34}{10}$ 2(4) Ξ		
			7⊽⊽ 7⊽⊽	

Fig. 3 Synthetic images of particle path lines and temp. distribution of SLF.

• Exp. conditions

(Length of liquid film)

 (L_x, d, L_z) [mm] = (2.0, 0.2, 4.0)

(volume ratio and Marangoni number)

 $V/V_0 = 0.9$, $\mathrm{Ma_L} = 19$

(temp. difference)

 $\Delta T = 6.7 \text{ K}$

(frame rate)

CCD camera : 120 fps, IR camera: 60 fps

<u>Summary</u>

Multicellular structures induced by the thermocapillary effect in the free liquid films are investigated experimentally and numerically.

Figure 4 shows cell number of SLF is increased as the increase of span-wise length (which means, the structure of SLF flow is depends on aspect ratio of free liquid film).

Figure 5 indicates cell number changes as aspect ratio to a threshold (ex. $\Gamma_{zx} = 8, 13, 15$).

► In the experiment up to now, the change of the cell structure has been confirmed even in the free liquid film with different volume ratio $(V/V_0 = 0.9 \text{ and } V/V_0 = 0.75)$.

In order to quantitatively evaluate each cell in SLF, each cell is defined as shown in Fig. 6.

▶ It is found that the size of the cells in the central region is almost constant and smaller than those near the side walls $(n \ge 4)$.

Correlation between the cell number/size and the liquid-film aspect ratio is illustrated. ► The size of cells expressed in SLF varies in location.	umerical simulations also show that the number of cells increases from two four when $\Gamma_{zx} \ge 4$. However, unlike experiments, no further increase has n confirmed until now. The flow from the cross-section direction $(x - y)$ observed in the numerical ulation is different from the experiment (Fei et al.).	Fig. 8 Convection field and temperature field by numerical simulation of free liquid film (2.0, 0.2, 3.0) and (1.0, 0.3, 3.0).
 Future plans General criteria for the pattern formation liquid film and its occurring condition will and will be compared to those of such as Ray and Marangoni-Bénard convections. Effects of bottom walls on the thermocal convection and pattern formation will be dis account of the thermal-flow fields and the end 	 A References Spaceflight.nasa.gov/station/crew/exp6/spacechronicles_videos.html. [1] https://spaceflight.nasa.gov/station/crew/exp6/spacechronicles_videos.html. [2] I. Ueno and T. Torii, Acta Astronautica, 2010. [3] T. Yamamoto, Y. Takagi, Y. Okano and S. Dost, Phys. Fluids, 25 (2013) 082108. [4] T. Yamamoto, Y. Takagi, Y. Okano and S. Dost, Trans. JSASS Aerospace Tech. Japan, 12 (2014), No. ists29, [5] T. Yamamoto, Y. Takagi, Y. Okano and S. Dost, Journal of Chemical Engineering of Japan, 48 (2015), No. 6 [6] L. Fei, K. Ikebukuro, T. Katsuta, T. Kaneko, I. Ueno and D.R. Pettit, Microgravity Sci. Technol. 29 (2017) 2 [7] L. Shin-Etsu Chemical Co., Technical Note: Silicone Oil KF96, Tech. Rep., Shin-Etsu Chemical Co., Ltd., (2011). 	Pe19. 9. Pe19. 9. Pe19. 9. Pe19. 9. Pe19. 9. Pe19. 9. Pe19. 10. Pet10. 10. 10. 10. 10. 10. 10. 10.