日本マイクログラビティ応用学会 第32回学術講演会 (JASMAC-32)

音場浮遊液滴の蒸発および析出プロセス ○丸山 侑太郎1, 長谷川 浩司2 1工学院大学大学院 工学研究科 機械工学専攻 2工学院大学工学部機械工学科

研究背景	研究目的	実 験 貧	₹ 件
音場浮游法の概要	課題	Reflector type	R36
^y ↑	音場浮遊させた多成分液滴の蒸発および析出挙動を理	Distance between the horn and reflector [mm]	48
- Reflector Loop Node Keflector	解するため、析出を伴う試料の溶質濃度が蒸発過程や析	Input frequency [kHz]	19.3
Acoustic standing wave		Sound pressure [kPa]	1.3-1.8
	目的	Test commute	Water Solt solution
→ * 液滴は定在波の節付近で浮遊可能.	析出を伴う液滴の蒸発による溶質濃度の変化を予測し、	rest sample	NaCl solution
	溶質濃度が蒸発過程に及ぼす影響を明らかにする.	Temperature [deg. C]	25 ± 2
音場浮遊法の応用:非接触流体制御技術		Humidity [%]	50 ± 7
	アプローチ	Equivalent diameter d [mm]	1.0-2.0
創場 「「「」」「「」」「「」」「「」」「」「」」「」「」」「」」「」」「」」「」」		Aspect ratio <i>b</i> / <i>a</i> [-]	1.0-1.6
薬浮 ふ 印 圖 御,混合,蒸発等を行うことを目的とし,	✓ 竹山を行つ液周の蒸光 道程の観祭および評価 ✓ 実験結果から各時刻塩分濃度の推定	Wave length of sound λ [mm]	18

RH : Relative Humidity [%

t:Time [s]

Ref.) Y. Niimura and K. Hasegawa, PloS one (2019)

KOGAKUIN

UNIVERSITY

Methanol

(伴う液滴に関しても挙動の理解や予測が求められる.

300

高精度な非接触流体制御技術の実現に向けて、多成分液滴の

蒸発挙動の詳細理解や予測は行われている. 一方で, 析出を

200

100

Time [s]

M: Molar mass [kg/mol]

 ρ_l : Liquid density [kg/m³]

浮遊試料の物性値

Sample	Density [kg/m ³]	Surface tension [mN/m]	Viscosity [mPa • s]	Saturated vaper pressure [kPa]	Diffusion coefficient [cm ² /s]	
Water	998	73	0.89	2.3	0.254	
10 wt% NaCl-water	1071	76	1.07	-	-	
15 wt% NaCl-water	1109	78	1.19	_	-	
20 wt% NaCl-water	1148	80	1.56	-	-	
25 wt% NaCl-water	1189	82	1.86	-	-	
26.4 wt% NaCl-water (saturation)	. 1197	_	_	1.8	-	
Ref.) [1] 機械学会, 流体の物性値集(1983) [2] 日本熱物性学会, 新編熱物性ハンドブック(2008) [3] A. Apelblat, <i>The Journal of Chemical Thermodynamics</i> (1998)						

および考 果 結 察 験 実

1

2

3

4

Function generator

Power amplifier

Power meter

Test section

8

LED Light

High-speed video camera

IR camera

Computer

8

