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• A sharp stability boundary obtained for thermal-solutal Marangoni convection.

• The stability range of the present global LSA is consistent with previous DNS results on thermal-solutal Marangoni convection with opposing forces.

• The 2D axisymmetric flow becomes chaotic through 3D steady flow when MaC ≤ 360. The quiescent flow directly becomes chaotic when MaC >360.

• The Flow is 2D axisymmetric when solutal Marangoni force dominant and the flow become unstable and chaotic when –MaT > MaC.
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Governing Equations
・Continuity 

・Navier-Stokes 

・Energy 

・Diffusion 

where, u = velocity vector, t = time, p = pressure, T = temperature, C = Si
concentration,𝜈 = kinematic viscosity, α = thermal diffusivity, D = diffusion
coefficient, 𝜌 = density.

Global Linear Stability Analysis

𝒖 𝑟, 𝜃, 𝑧, 𝑡 = ഥ𝒖 𝑟, 𝜃, 𝑧 + ϵ𝒖′ 𝑟, 𝜃, 𝑧, 𝑡
T 𝑟, 𝜃, 𝑧, 𝑡 = ഥ𝑻 𝑟, 𝜃, 𝑧 + ϵ𝑻′ 𝑟, 𝜃, 𝑧, 𝑡
𝑪 𝑟, 𝜃, 𝑧, 𝑡 = ഥ𝑪 𝑟, 𝜃, 𝑧 + ϵ𝑪′ 𝑟, 𝜃, 𝑧, 𝑡

By Substituting In 
governing equations

Flow decomposition

𝜆ෝ𝒖 = 𝐴ෝ𝒖

𝜆 > 0 Unstable base flow

𝜆 < 0 Stable base flow

𝜆 = 0 Onset
Arnoldi Method  F. Gómez et al., (2014)

𝐿𝑒𝑡 𝒃 𝑏𝑒 𝑎𝑛 𝑎𝑟𝑏𝑖𝑡𝑎𝑟𝑦 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟

𝑞1 = ൗ𝑏 𝑏 2

for 𝑛 = 1,2,3,…
𝑣 = 𝐴𝑞𝑛
for 𝑗 = 1: 𝑛
ℎ𝑗𝑛 = 𝑞𝑗

∗𝑣

𝑣 = 𝑣 − ℎ𝑗𝑛𝑞𝑗
end
ℎ𝑛+1,𝑛 = 𝑣 2

𝑞𝑛+1 = ൗ𝑣 ℎ𝑛+1,𝑛

end

OpenFOAM

𝐴𝑞𝑛 =
0׬
𝑡
𝑓 ഥ𝒖 + ϵ𝑞𝑛 𝒅𝒕 − 0׬

𝑡
𝑓 ഥ𝒖 𝒅𝒕

ϵ

Upper Hessenberg

ℎ11 ⋯ ℎ1𝑛
⋮ ⋱ ⋮
0 ⋯ ℎ𝑛+1,𝑛

Stability Curve

Acknowledgment
This research partly used computational resources of Research Institute for Information Technology, Kyushu University and partially supported by JSPS KAKENHI grant number JP19K22015

Concentration distribution of Si 

r-θ plane at z/L=0.5 and vertical r-z plane

DMD Results

Representative dynamic modes corresponding to the leading eigenvalues, visualized by contours of the 
concentration field at ( MaT, MaC )=(-1040,893): (a) ω = 0 ,(b)  ω = 0.01, and (c) ω = 0.039
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Pr MaT,cri As Pr MaT,cri As Pr MaT,cri As

0.01 1892 1 0.01 1899 1 0.01 1887 1

0.02 2054 1 0.02 2062 1 0.02 2041 1

Validation

Previous studies (3D CFD simulations) on Floating Zone method

• The Onset of Thermal – Solutal Marangoni convection cannot achieve by Direct Numerical Simulations (DNS)
• The Linear stability analysis (LSA) is required to determine the Critical Marangoni numbers

Floating Zone (FZ) method  in microgravity
• No possibility of crucible contamination
• Less gravitational segregation

Marangoni convection
• Undesirable growth striations
• Non uniformity into grown crystals

Time evolution of DNS Results

MaT,f = Thermal Marangoni force
MaC,f = Solutal Marangoni force

Feed rod

Melt

Single 
crystal

Free surface

Floating Zone method – setup
(M. Lappa 2004)

Results

(MaT, MaC)=(-1030, 893) (MaT, MaC)=(-1040, 893)

Concentration norm as a function of frequency (DMD)
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Two step flow transition 
1. Steady Axisymmetric to 3D Steady flow

2. 3D steady to oscillating flow

H. Minakuchi et al.,(2018)

H. Minakuchi et al.,(2018)

Hysteresis Study

• 24% difference between the critical values in the 
hysteresis diagram.

• The critical value (MaC)cr depends on the initial 
condition.

(MaC)cr
(MaC)cr 24 %

The amount of change of the velocity at sampling 
point (r, θ, z) = (a, 0, 0.5L).

(MaC)cr

H. Minakuchi et al.,(2018)

Global Linear stability analysis
R.L.A. Mendis et al.,(2020)


