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1. Introduction 

The Marangoni flow is driven by surface tension gradients along with the liquid-gas interface due to temperature and/or 

concentration gradient and leads to undesirable growth striations in the grown crystals of the alloys of silicon (Si) and 

germanium (Ge) in the floating zone method. The previous numerical studies and linear stability analysis (LSA) 1,2) have 

been shown a series of transitions of flow states for low Prandtl number fluids as thermal Marangoni number increases: 

an axisymmetric steady flow becomes a three-dimensional non-axisymmetric flow; and then becomes an oscillatory flow. 

Although, the previous studies only focuse on thermal Marangoni flow, solutal one also has significant contributions to 

the flow pattern3,4). However, the theoretical onset of the thermal-solutal Marangoni convection with opposing forces has 

not been yet determined. Here, the present study performs three-dimensional global LSA5) to reveal the onset of thermal 

and solutal Marangoni convection with the opposing forces in a cylindrical liquid bridge. The dynamic modes of the 

chaotic flows have been extracted as spatio-temporal coherent structures by using dynamic mode decomposition. 

 

2. Model Formulation  
A half zone model was considered as a liquid bridge between the cold and hot disks as shown in Fig. 1 assuming that 

(1) the fluid is incompressible and Newtonian, (2) the solid/liquid interfaces are flat and (3) the system is under zero gravity. 

The governing equations obtained by the mass, momentum and energy conservations are: 

𝛁𝛁 ⋅ 𝒖𝒖 = 0,      (1) 

𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕

+ 𝒖𝒖 ∙ 𝛁𝛁𝒖𝒖 = − 1
𝜌𝜌
∇𝑝𝑝 + 𝜈𝜈∇2𝒖𝒖,   (2) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝒖𝒖 ∙ 𝛁𝛁𝑇𝑇 = 𝛼𝛼∇2𝑇𝑇,     (3) 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝒖𝒖 ∙ 𝛁𝛁𝐶𝐶 = 𝐷𝐷∇2𝐶𝐶,    (4) 
 where, u is the velocity vector, t is the time, p is the pressure, T is the temperature, and C is the silicon concentration. ρ, 

υ(=µ⁄ρ), α, µ, and D are the density, the kinematic viscosity, the thermal diffusivity, the viscosity, and the diffusion 

coefficient, respectively. Non-dimensional numbers are: 

𝑀𝑀𝑀𝑀𝜕𝜕 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

∆𝜕𝜕𝑇𝑇
𝜇𝜇𝜇𝜇

,  𝑀𝑀𝑀𝑀𝜕𝜕 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

∆𝜕𝜕𝑇𝑇
𝜇𝜇𝜇𝜇

, 𝑆𝑆𝑆𝑆 = 𝜇𝜇
𝐷𝐷

, 𝑃𝑃𝑃𝑃 = 𝜇𝜇
𝛼𝛼

, 𝐴𝐴𝐴𝐴 = 𝑎𝑎
𝑇𝑇
 

where MaT is the thermal Marangoni number, MaC is the solutal Marangoni number, Sc is Schmidt number, Pr is Prandtl 

number, and As is the aspect ratio of liquid bridge. In the present study Sc=14, Pr=0.006, and As=0.5 were assumed. 
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The boundary conditions can be expressed as follows; 

along the upper disk (z=L):  

non-slip condition for the velocity, T=TC, C=1; 

along the lower disk (z=0):  

non-slip condition for the velocity, T=Th, C=0; 
along the free surface (r=a): 

𝒖𝒖𝑟𝑟 = 0, 𝜇𝜇 𝜕𝜕𝒖𝒖𝑧𝑧
𝜕𝜕𝑟𝑟

= −�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�, 𝜇𝜇 �𝑃𝑃 𝜕𝜕

𝜕𝜕𝑟𝑟
�𝒖𝒖𝜃𝜃
𝑟𝑟
�� = −1

𝑟𝑟
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 Linear Stability Analysis 

The flow decomposes into a base flow, 𝒖𝒖� , and three-dimensional infinitesimal perturbations, (𝒖𝒖′,𝐶𝐶′,𝑇𝑇′) 

𝒖𝒖(𝑃𝑃,𝜃𝜃, 𝑧𝑧, 𝑡𝑡) = 𝒖𝒖�(𝑃𝑃,𝜃𝜃, 𝑧𝑧) + 𝒖𝒖′(𝑃𝑃,𝜃𝜃, 𝑧𝑧, 𝑡𝑡)  (5) 

𝐶𝐶(𝑃𝑃,𝜃𝜃, 𝑧𝑧, 𝑡𝑡) = �̅�𝐶(𝑃𝑃,𝜃𝜃, 𝑧𝑧) + 𝐶𝐶′(𝑃𝑃,𝜃𝜃, 𝑧𝑧, 𝑡𝑡)  (6) 

𝑇𝑇(𝑃𝑃,𝜃𝜃, 𝑧𝑧, 𝑡𝑡) = 𝑇𝑇�(𝑃𝑃,𝜃𝜃, 𝑧𝑧) + 𝑇𝑇′(𝑃𝑃,𝜃𝜃, 𝑧𝑧, 𝑡𝑡)  (7) 
A linearized eigenvalue problem can be obtained by substituting this decomposition into the governing equations and 

by ignoring the second-order infinitesimal terms. Using a state vector 𝒙𝒙 = (𝒖𝒖,𝑇𝑇,𝐶𝐶, 𝑝𝑝), we rewrite the governing equations 

of the variables as  𝜕𝜕𝒙𝒙
𝜕𝜕𝜕𝜕

= 𝑓𝑓(𝒙𝒙) and the governing equation of the perturbation 𝒙𝒙′ is expressed as; 
𝜕𝜕𝒙𝒙′
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕(𝒙𝒙�)
𝜕𝜕𝒙𝒙

𝒙𝒙′ = 𝐴𝐴𝒙𝒙′     (8) 
where A is the Jacobian matrix which is O (106) in the present study. The growth rate λ with respect to the infinitesimal 

perturbation, 𝒙𝒙′(𝑃𝑃,𝜃𝜃, 𝑧𝑧, 𝑡𝑡) = 𝒙𝒙�(𝑃𝑃,𝜃𝜃, 𝑧𝑧)eλt can be obtained by solving the following eigenvalue problem; 

𝛬𝛬𝒙𝒙� = 𝐴𝐴𝒙𝒙�       (9) 

where Λ is the spectrum of eigenvalues determine the stability of the base flow (𝒙𝒙 ) and 𝒙𝒙  is the corresponding 

eigenfunction. Here, λ>0 indicates the baseflow is unstable and λ<0 is stable. The large-scale generalized eigenvalue 

problem can be solved by Arnoldi method combined with time-stepping simulation using OpenFOAM 6). The 

implemented linear stability code validated by comparing the first critical thermal Marangoni numbers in a literature and 

the results were agreed within 1% with reference values 2). 

 

4 Results and Discussion 

Figure 2 shows the stability diagram of the axisymmetric periodic base flow together with previous DNS results (on 

thermo-solutal Marangoni convection with the opposing forces) of Jin et al. (2020) 3). A perodic baseflow used for LSA in 

The 2D axisymmetric flow becomes chaotic through 3D steady flow when solutal Marangoni number, MaC ≤ 360 and quasi-

periodic flow behaviour observed at the onset. The quiescent flow directly becomes chaotic when MaC >360. The Stability 

curve is laying below the line of MaC =- MaT. and thus, literally that the flow is 2D axisymmetric when solutal Marangoni 

force dominant. The flow becomes unstable and chaotic when – MaT > MaC. Figure 3 shows a detailed example of time 

snapshots of concentration distribution in horizontal and vertical planes of the liquid bridge near the onset when MaC=893. 

The time evaluation of the concentration at the sampling point ((r,θ,z)=(0.99a,0,0.5z)) shown in Fig. 4 indicates that the flow 

is weakly periodic and stable before it turns chaotic. The representative dynamic modes corresponding to the dominant 

 

Fig 1 Geometry of liquid bridge: The arrows represent the 

direction of Marangoni forces by the temperature and 

concentration gradients along the surface 

T C 
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eigenvalues with respect to the chaotic flow at (MaT, MaC) = (-1040, 893) are shown in Fig. 5. Where Fig.5 (a) represents the 

steady-state (mean flow) at ω = 0 and two specific modes dominate the energy spectrum are shown in Fig.5 (b) and (c) at 

ω = 0.01 and 0.039 rad/s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 2 Stability curve of axisymmetric flow 

(a)                     (b) 

 
Fig 3 Concentration distribution of Si in the r-θ plane at 

z/L=0.5 and vertical r-z plane: (a) (MaT, MaC)=(-1030, 893) 

and (b) (MaT, MaC)=(-1040, 893) 

 
Fig 4 Time evolution of the concentration at the sampling point (r,θ,z)=(0.99a,0,0.5z) 
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4 Conclusions 

The onset of opposite thermo-solutal Marangoni convection in a half-zone liquid bridge is investigated by LSA. The 

solutal Marangoni convection develops in the direction opposite to the thermal Marangoni convection along the free 

surface of the liquid bridge. The 2D axisymmetric flow becomes chaotic through 3D steady flow when MaC ≤ 360. The 

quiescent flow directly becomes chaotic when MaC >360. The stability curve has been obtained by LSA and the 

representative dynamic modes corresponding to dominant eigenmodes of the chaotic flows have been extracted as spatio-

temporal coherent structures by using dynamic mode decomposition. 
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(a)                                 (b)                               (c) 

 

Fig 5 Representative dynamic modes corresponding to the leading eigenvalues, visualized by contours of 

the concentration field at ( MaT, MaC )=(-1040,893): (a) ω = 0 ,(b)  ω = 0.01, and (c) ω = 0.039 
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